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Abstract

Bats are under threat from habitat loss, energy development, and the disease white-nose syndrome; therefore, an
efficient and effective means to monitor bat populations is needed. The North American Bat Monitoring Program
(NABat) was initiated in 2015 to provide standardized, large-scale monitoring to benefit bat biologists, managers, and
policy makers. Given the recency of this program, our first objective was to determine the efficacy of implementing
NABat. Further, because the probability of detecting a bat varies among species and survey conditions, our second
objective was to determine factors affecting detection probabilities of bats using NABat acoustic surveys. We
conducted surveys across South Carolina from mid-May through July 2015 and 2016. To determine efficacy of NABat,
we compared species detections with historical known distributions and predicted distributions based on
environmental occupancy models. To determine factors that affected detection probability, we evaluated support
for predictive detection models for each species or species grouping. In general, we found that predicted distributions
closely matched known distributions. However, we detected some species in �50% of cells within their ranges and
others outside their ranges, suggesting NABat may also reveal new information about species distributions. Most
species had higher detection probabilities at stationary points than mobile transects, but the influence of interrupted
surveys, environmental conditions (e.g., temperature, rainfall, and wind) and habitat conditions often varied among
species. Overall, our results suggest NABat is an effective and efficient method for monitoring many bat species, but
we suggest that future efforts account for species-specific biological and behavioral characteristics influencing
detection probability.
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Introduction

Bat populations in North America are currently under
stress from a number of major threats (Loeb et al. 2015;
Pauli et al. 2015). For example, white-nose syndrome
(WNS) has caused severe declines in hibernating bat
populations since 2007 in the northeastern United States

(Turner and Reeder 2009). The epidemic has continued

to spread across the East and Midwest regions, and was

recently discovered in the western state of Washington,

suggesting future declines will occur at a continental

scale (Lorch et al. 2016). Additionally, bat populations are

being negatively affected by energy development (Kunz
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et al. 2007; Arnett and Baerwald 2013), habitat alteration,
and climate change (Jones et al. 2009; Rebelo et al. 2010).

To develop effective bat conservation strategies,
managers require a robust and repeatable method of
monitoring bat populations. Acoustic monitoring has
become a common method of monitoring bat popula-
tions because of the ease of the equipment setup and
low personnel requirement. Relative to more traditional
methods such as mist-netting, acoustic monitoring
requires no bat handling and thus is less invasive and
requires less training. Detectors are also more cost-
effective than mist-netting (Coleman et al. 2014).
Therefore, it is relatively easy to conduct acoustic surveys
of bats in a variety of habitat types (Murray et al. 1999;
Britzke et al. 2013). As a result, several acoustic
monitoring approaches have been developed, including
passive stationary-point sampling (placing a microphone
at a site and leaving it deployed without a person being
present; Johnson et al. 2002) and mobile survey
techniques (Loeb et al. 2015). Unfortunately, each of
these approaches varies in its probability of detecting a
species, thus limiting our ability to make comparisons
among methods over time (Tonos et al. 2014; Whitby et
al. 2014; Braun de Torrez et al. 2017).

The North American Bat Monitoring Program (NABat)
was recently developed to provide standardized meth-
ods to monitor bat populations across the continent
(Loeb et al. 2015). Surveys can be implemented from
local to range-wide scales, and researchers can analyze
their data to make inferences about local populations
and develop suitable management strategies. Data can
be submitted to a national database, and with NABat’s
standardized site selection and sampling methods, large-
scale analyses of changes in bat relative abundance and
distributions are possible (Loeb et al. 2015). The NABat
guidelines were released in 2015, when we began our
study. The guidelines suggest that each cell have one
mobile transect and two to four stationary points and
recommend sampling �30 cells within each state. Thus,
our first objective was to determine the efficacy of NABat
methods by implementing the suggested protocols
within South Carolina and comparing species detection
locations to their known distributions based on historical
survey records and to their predicted distributions based
on landscape occupancy models. Fourteen bat species
are known to occur in South Carolina, 12 of which are
considered species of greatest conservation need by the
State Wildlife Action Plan (South Carolina Department of
Natural Resources 2015), including the northern long-
eared myotis Myotis septentrionalis (MYSE), which was
recently listed as a threatened species under the U.S.
Endangered Species Act (ESA 1973, as amended) due to
declines from WNS (Federal Register 2015). White-nose
syndrome is also severely affecting little brown bats M.
lucifugus (MYLU) and tricolored bats Perimyotis subflavus
(PESU) in South Carolina, and can infect eastern small
footed bats M. leibii (MYLE) and big brown bats Eptesicus
fuscus (EPFU; U.S. Fish and Wildlife Service 2014);
however, the latter two species are not experiencing
significant declines due to WNS (Langwig et al. 2012).

The probability of detecting bats with any acoustic
survey method varies based on effort, timing, weather,
and habitat conditions (Yates and Muzika 2006; Hein et
al. 2009; Bender et al. 2015). Variation in detection
probability can affect the level of sampling effort needed
(i.e., high variation may require more sampling effort) to
detect some species (Law et al. 2015). Also, a failure to
detect a species when it is present (i.e., a false negative)
can misinform management of critical habitat (MacKen-
zie 2005). Therefore, because detection probability
should be accounted for in analyses of NABat acoustic
data, our second objective was to determine which
factors significantly affect detection probabilities for
each species of bat in South Carolina. We expect results
of this study to help improve implementation of NABat
acoustic surveys by showing which factors affect
detection probabilities, so they may be taken into
account in future studies and monitoring efforts.

Study Area

We collected data throughout South Carolina, which
consists of five major physiographic regions in a gradient
from northwest to southeast: Blue Ridge, Piedmont,
Southeastern Plains, Middle Atlantic Coastal Plain, and
Southern Coastal Plain (U.S. Environmental Protection
Agency 2011). We also collected a small amount of data
in bordering areas of Georgia and North Carolina. Land
use in South Carolina includes various intensities of
urban development, silviculture, agriculture, livestock,
and undeveloped land. Land cover in the Blue Ridge is
dominated by deciduous, evergreen, and mixed forests;
the Piedmont by deciduous and evergreen forests and
hay or pasture; the Southeastern Plains and Middle
Atlantic Coastal Plains by woody wetlands, evergreen
forests, shrub lands, and cultivated crops; and the
Southern Coastal Plain by emergent herbaceous wet-
lands, woody wetlands, evergreen forests, and open
water (Homer et al. 2015). The northwestern part of the
state is mountainous with elevations up to 1,085 m. The
Piedmont is characterized by high hills in the upper part
of the region and rolling hills in the lower Piedmont. The
Coastal Plains range from rolling hills in the north to low-
lying wetlands near the coast.

Methods

We utilized the NABat continent-wide grid of 10 3 10
km cells to identify priority cells for acoustic surveys
within South Carolina. The sampling design for NABat is
the generalized random tessellation stratified algorithm,
which assigns priority numbers to cells to maintain a
spatially balanced, random sample (Loeb et al. 2015). We
followed the NABat recommendations and selected the
top 30 priority cells from the NABat master sample for
South Carolina (U.S. Geological Survey 2019). We
developed mobile transect routes 25–48 km in length
that were primarily contained within the cells; passed
through common habitat types of the area; did not come
within 100 m of another transect section; required
minimal stopping; passed through no stoplights; and
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did not include roads with heavy traffic, gates to open
and close, or sections where driving at 32 km/h was
dangerous (Loeb et al. 2015). We utilized the National
Transportation Dataset RoadSegment data (U.S. Geolog-
ical Survey, National Geospatial Technical Operations
Center 2014) to select roads for transect routes, and
filtered it to only include secondary and tertiary road
classes because these typically meet the transect criteria.
We also examined the National Forest System Roads (U.S.
Forest Service 2015a) because some of these road
segments are not included in the National Transporta-
tion Dataset and were suitable for transects. We
categorized habitat types within the cells using the
National Land Cover Database (U.S. Geological Survey
2014) and made certain transects passed through or
adjacent to common habitat types in each cell. Finally,
we cross-checked the Geographic Information System
data by examining roads in Google Maps and used
Google Street View to make sure routes did not pass
through stoplights. If cells were not suitable for mobile
transects, we dropped them from the sample or
surveyed them with stationary detectors only, and
selected replacement cells sequentially from the gener-
alized random tessellation stratified list until 30 transects
could be developed.

We followed the NABat criteria for stationary sampling
points and attempted to find sites that maximized the
quality of recordings as well as the diversity of species
detected. We sought 2–4 points/cell and ideally, one
point in each quadrant of a cell, or in different habitats in
cells that had heterogeneous habitat types. To select
sites for stationary point surveys, we used the National
Land Cover Database to examine habitat types within
each cell and the U.S. Forest Service Basic Ownership
database (U.S. Forest Service 2015b) to identify public
lands. We also viewed aerial imagery from Google Maps
to examine land cover and vegetation structure so the
most appropriate survey locations could be determined
based on two criteria. First, during summer, bat species
in South Carolina commonly roost in trees or human
structures and fly along edges to reach water and
foraging areas (Menzel et al. 2003). Therefore, we
typically sought out forest edges and water sources.
Second, for long-term monitoring, access to the same
sites is needed for many years. Therefore, we prioritized
sites on public land. However, few cells contained public
lands and we found it necessary to also secure
permission to survey private lands.

For both mobile transect and stationary-point acoustic
surveys, we used Anabat SD2 bat detectors with
directional, stainless steel microphones (Titley Scientific,
Columbia, MO) and 2.5-m microphone cables. We used
10 detectors for stationary surveys and 4 for mobile
surveys. Before each survey season, we calibrated
detector sensitivities using the Anabat Equalizer (Titley
Scientific). We set the internal sensitivity to 30% and kept
detectors, microphones, and cables together throughout
the season to retain calibrations. Logistical constraints
meant that we were not able to recalibrate detectors
during the survey season. During 2015 we randomly
assigned detectors to sites, but during 2016 we assigned

the detector from the previous year to each site to
ensure consistency between years. For mobile surveys,
we kept detectors in the cabin during operation to
monitor its functionality throughout the surveys. The
microphone was attached to the center of the roof near
the front and was oriented straight up from the roof of
the vehicle, with no housing or weatherproofing; the
surface of the microphone was 18.5 cm above the
vehicle’s roof.

For stationary point surveys, we placed the micro-
phone at one end of a 3.8-cm-diameter polyvinyl
chloride (PVC) tube attached to the top of a 1.8-m
camera tripod, with the opening of the PVC set so that
the microphone was at a 458 angle. Detectors were set
3–5 m from clutter and oriented away from it. We took
3608 panoramic photographs of the area surrounding
each stationary point and recorded the microphone’s
bearing to ensure this remained constant between
survey years.

We conducted surveys mid-May through July 2015
and 2016 as suggested by Loeb et al. (2015) to capture
the summer resident population even though this time
period may result in lower detections of migratory
species such as hoary bats Lasiurus cinereus (LACI) and
silver-haired bats Lasionycteris noctivagans (LANO). To
efficiently use and distribute survey equipment and
complete surveys within the sampling season, we
grouped two to six neighboring cells into nine weekly
survey areas. Parturition dates in temperate bats are
related to temperature (Racey 1982). The NABat surveys
should be completed before young become volant to
obtain estimates of the adult population (Kunz 2003;
Loeb et al. 2015); therefore, we began surveys in the
southeastern-most cells and proceeded north and west
through the state, with the final surveys occurring in the
Blue Ridge region in the northwest.

We surveyed all stationary points for four consecutive
nights from 15 min prior to sunset to 15 min after
sunrise. We surveyed each mobile transect twice during
this period, beginning 45 min after sunset, with the same
start and end locations. The same points and transects
were surveyed in both 2015 and 2016, where possible. If
it rained or wind speed was .10 km/h during a mobile
survey, we paused for up to 15 min to allow conditions
to improve. If they did not, we ended the survey at that
location and made another attempt to survey the entire
transect later in the week.

Data analysis

We removed acoustic files that contained no bat calls
using a custom noise filter in AnalookW version 4.2.7,
and then manually removed files that contained fewer
than three bat call pulses. For 2015 data, we classified
the remaining files using EchoClass version 3.1 and
Kaleidoscope Pro version 3.1.5, and then manually vetted
all classifications based on reference calls of each species.
We often observed misclassifications and low agreement
between the two automated classifiers. Thus, for 2016
data, we did not use classification software and instead
manually classified all high-quality calls. We used
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reference calls that were recorded from identified
captured bats that were light-tagged (Britzke et al.
2011), and used characteristics such as the minimum and
characteristic frequencies, slope, and variation in mini-
mum frequencies of pulses within the call files to identify
calls. All vetting and identification of calls was done by
the senior author (BDN) to ensure consistency with
consultation with the second author (SCL) when calls
were questionable. Some species have very similar call
characteristics and cannot always be discriminated, so
we grouped calls of EPFU and silver-haired bat as
EPFULANO, and eastern red bat Lasiurus borealis (LABO)
and Seminole bat L. seminolus (LASE) as LABOLASE. We
had very few MYLE, MYLU, and MYSE detections and it is
sometimes difficult to discriminate among their calls, so
we combined their detection histories into one group
(MYLELUSE) for more robust modeling of these species.
We also included unknown Myotis calls from the Blue
Ridge and Piedmont regions in this group because no
other Myotis species occur in these regions. We did not
include unknown Myotis calls from the other regions
because those may have been calls of southeastern
myotis Myotis austroriparius (MYAU), which has different
habitat associations than the other three species.

We used two methods to evaluate the efficacy of
NABat. If NABat acoustic surveys are a good approach to
monitoring bat species in South Carolina, we expected to
detect species in each cell within their known distribu-
tions. Thus, we compared our detections with previously
known species ranges throughout the state (Menzel et al.
2003). However, if species distributions have shifted in
South Carolina due to habitat changes and the presence
of WNS, or if historical surveys were insufficient,
distribution maps from 2003 may not be accurate. Thus,
we also compared detections with predicted distribution
maps that we developed with landscape occupancy
models (Neece et al. 2018). For both 2003 known ranges
and predicted distributions, we determined the percent-
age of the cells surveyed within each species’ range in
which it was detected. Detections of species outside of
their 2003 known ranges provides new information for
effective bat conservation and habitat management and
is another measure of the efficacy of NABat; therefore,
we also counted the number of cells outside of the 2003
known range in which each species was detected.

We used a Bayesian occupancy modeling approach to
evaluate the relative importance of hypothesized envi-
ronmental and survey factors on the detection proba-
bility for each species. We first created presence–
nondetection tables for each species on each survey
occasion within each cell. We treated one night at a
stationary point as a survey occasion and one mobile
transect survey as a separate survey occasion, even if
they occurred on the same night. This allowed us to
compare the effects of survey method on detection
probabilities.

The type of acoustic survey—mobile transect or
stationary point—is known to influence detection
probability of bat species. Some studies comparing the
two methods have found higher probabilities of
detection at stationary points (Tonos et al. 2014; Whitby

et al. 2014), and others have found higher probabilities
of detection on mobile transects (Fisher-Phelps et al.
2017). The NABat stationary-point surveys last all night
and mobile transect surveys are approximately 1 h, so we
hypothesized that detection probabilities would be
higher at stationary points compared with mobile
transects for all species in our study (Table 1). We used
two approaches to test this hypothesis. One approach
utilized a categorical covariate designating either mobile
transect or stationary point for each occasion. The
second approach used the duration of each survey
occasion in minutes. This variable was another compar-
ison of the two methods but also considered variation
within each survey method, particularly the differences
in duration of mobile transects and stationary point
surveys.

Vegetation clutter, such as dense forest and shrub
stands, can also influence detection probabilities within
and among bat species. Bats have evolved morpholog-
ical and call structure adaptations to clutter (Menzel et al.
2005), so species abundances may vary by the amount of
clutter, which could result in variation in probabilities of
detection among species based on clutter amount.
Additionally, sound transmission is affected by the
amount of clutter, and the effects vary by echolocation
call frequency (Patriquin et al. 2003). Therefore, even if
the abundance of a species is not affected by vegetation
clutter, the probability of detecting it could still vary by

Table 1. Predicted effects of covariates on the probability of
detection for bat species or species groups using acoustic
detectors across South Carolina during summer 2015 and 2016.
Symbols indicate positive (þ), negative (�), no (0), and unknown
(?) effect. ‘‘Type’’ is mobile survey (0) or stationary point survey
(1). ‘‘Duration’’ is the length of the survey period in minutes.
‘‘Clutter’’ is categorical with mobile transect (0) and low- (1),
medium- (2), or high- (3) vegetation-clutter stationary point.
‘‘Date’’ is Julian day of the survey occasion. ‘‘Temp’’
(temperature), ‘‘RH’’ (relative humidity), and ‘‘Wind’’ (wind
speed) are mean values during the survey period. ‘‘Rain’’ is
categorical with either no rain (0) or rain (1) during the survey
period.

Speciesa Type Duration Clutter Date Temp RH Wind Rain

CORA þ þ � 0 þ ? � �
LAIN þ þ � � þ ? � �
EPFULANO þ þ � 0 þ ? � �
LABOLASE þ þ 0 0 þ ? � �
LACI þ þ � þ þ ? � �
MYAU þ þ 0 � þ ? � �
MYLE þ þ 0 þ þ ? � �
MYLU þ þ 0 þ þ ? � �
MYSE þ þ 0 þ þ ? � �
NYHU þ þ 0 0 þ ? � �
PESU þ þ 0 0 þ ? � �
TABR þ þ � 0 þ ? � �
a Corynorhinus rafinesquii (CORA), Lasiurus intermedius (LAIN), Eptesicus

fuscus or Lasionycteris noctivagans (EPFULANO), Lasiurus borealis or L.

seminolus (LABOLASE), L. cinereus (LACI), Myotis austroriparius (MYAU),

M. leibii (MYLE), M. lucifugus (MYLU), M. septentrionalis (MYSE),

Nycticeius humeralis (NYHU), Perimyotis subflavus (PESU), and Tadarida

brasiliensis (TABR).
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clutter amount. Both open-adapted and clutter-adapted
bat species occur in South Carolina, and the areas we
surveyed varied in vegetation clutter amount. Thus, we
hypothesized increasing vegetation clutter around sta-
tionary points would decrease detection probabilities for
open-adapted species, but would not affect detection of
clutter-adapted species (Yates and Muzika 2006; O’Keefe
et al. 2013). To test this hypothesis, we created a
categorical covariate based on the vegetation cover
surrounding each detector as viewed in the 3608
panoramic photos. Vegetation clutter varies along
mobile transects, so we used those as the reference
value (0). We considered points in the open or with very
little forest nearby as low clutter (1), points with �90%
forest within 10 m and filling the frame as high clutter (3)
and points intermediate between low and high clutter as
medium clutter (2).

Reproductive phenology can affect bat activity (Hayes
1997) and, therefore, survey date could affect detection
probability. Our surveys were conducted within a few
months and before young became volant, so we
hypothesized that survey date would not affect detec-
tion probabilities of species distributed statewide.
Conversely, we hypothesized that detection probability
of species with limited distributions would be positively
affected by survey date if areas surveyed later in the
season were in their known range, and negatively
affected by survey date if areas surveyed earlier in the
season were in their known range.

Equipment malfunction and weather conditions could
also influence detection probabilities. We hypothesized
that an equipment malfunction (e.g., a stationary
detector was knocked over, not functioning properly
upon retrieval), or an incomplete mobile transect survey
would result in lower probability of detection. Bat
activity tends to increase with increasing temperature
(O’Donnell 2000; Broders et al. 2006; Kitzes and Meren-
lender 2014; Wolbert et al. 2014); therefore, we
hypothesized that the probability of detection for all
species would increase as temperature increased. Rela-
tive humidity affects the attenuation of sound waves
(Bass et al. 1990) and may both positively and negatively
affect the detection of bats (Starbuck 2013). Thus, we
tested whether it had an effect for any species in our
surveys. Increasing wind speed decreases the probability
of detection (O’Farrell et al. 1967; Rydell 1989), and the
occurrence of rain can reduce bat activity (Loeb et al.
2015; Appel et al. 2017). Therefore, we also hypothesized
that wind and rain would negatively affect detection
probabilities of all species (Table 1). We obtained data
from the nearest Meteorological Terminal Aviation
Routine Weather Reports stations to each cell. We used
the mean temperature, relative humidity, and wind
speed over each survey period, and created a categorical
covariate for whether or not it rained during the survey.

We used a Bayesian approach to fit detection models
for each species independently while holding occupancy
constant. We used noninformative priors and treated all
terms as fixed. We used three independent Markov
chains, each with 25,000 iterations after discarding the
first 5,000 iterations as burn-in and retained every fourth

iteration for a total of 18,750 iterations/model. We fit
models by calling JAGS version 4.1.0 (http://mcmc-jags.
sourceforge.net/) with the package ‘rjags’ in Program R
version 3.3.3 (https://www.r-project.org/).

Prior to analysis, we standardized all continuous
covariates to have a mean of 0 and standard deviation
of 1. We used Pearson’s correlation to test for
correlations among covariates and considered those
with a Pearson’s jrj . 0.7 as correlated and did not
include them in the same model. ‘‘Type,’’ ‘‘Duration,’’
and ‘‘Clutter’’ were correlated with one another, so we
did not include them in the same models (Table S1,
Supplemental Material).

We evaluated support of a null model and single-term
models for each of the nine covariates (‘‘Type,’’
‘‘Duration,’’ ‘‘Clutter,’’ ‘‘Issue,’’ ‘‘Date,’’ ‘‘Temp,’’ ‘‘RH,’’
‘‘Wind,’’ ‘‘Rain’’). We expected survey method and
factors negatively affecting acoustic detectors would
strongly affect probabilities of detection, so we also
tested a model with the best performing survey method
covariate with ‘‘Issue’’ and ‘‘Rain.’’ We tested a global
model composed of the best performing survey method
covariate and the six other covariates. Finally, we tested
all combinations of covariates from the three best
performing single-term models.

We monitored model convergence using the potential
scale-reduction factor (i.e., the Brooks–Gelman–Rubin
diagnostic) and assumed convergence when the R-hat of
each parameter was ,1.1. To rank models, we calculated
the Widely Applicable Information Criterion (WAIC) for
each model using the package ‘loo’ version 1.1.0. For
each species, we calculated DWAIC from the top-ranked
model and each model’s relative likelihood and weight.
We calculated 95% credible intervals for covariate
estimates and considered their effects significant if the
intervals did not include zero. For the top-ranked model
for each species, we evaluated model performance with
k-fold cross-validation. We created five random partitions
of the data, with 66% of each partition as a training data
set and the remainder as a testing data set. We reviewed
each training partition to be sure at least one cell from
each of the five ecoregions was in each data set, and
used the same partitions to evaluate models for each
species. For each model, we used the package ‘ROCR’
version 1.0.7 to calculate area under the receiver-
operating curve. Area-under-curve values range from 0
to 1, with 0.5 indicating no predictive power (i.e.,
random) and 1.0 indicating perfect predictive perfor-
mance (Cumming 2000).

Results

Cell, survey point, and transect selection
In total, we surveyed 35 cells in 2015 and 38 cells in

2016 (Figure 1). In 2015 we surveyed 29 cells with mobile
transects (15 with mobile transects only and 14 with
both mobile transects and stationary points) and 30 cells
with mobile transects in 2016 (13 with mobile transects
only and 17 with both methods; Figure 1). We were
unable to develop routes in nine of the top-priority
NABat cells. Issues that prevented development of
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Figure 1. North American Bat Monitoring Program acoustic survey methods used and number of stationary points surveyed within
each cell in summer 2015 (top) and 2016 (bottom) and cell distributions throughout the physiographic regions of South Carolina
(U.S. Environmental Protection Agency 2011).
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transect routes included cells that did not contain
enough suitable roads, gates and stoplights restricting
use of roads that were otherwise suitable, and road
segments that were not connected within the cells and
would require too much time driving outside the cells
(e.g., in coastal cells where waterways limited road
intersections). One transect had to be modified in 2016
due to a road closure on a section of the route. Transect
lengths were 25.5–49.5 km (mean ¼ 33.5 km). Mobile
surveys were conducted on 65 occasions each season
and ranged in duration from 1 to 99 min (mean ¼ 62.4
min) not including time paused for weather or other
issues.

We completed stationary point surveys in 20 cells in
2015, 6 of which were surveyed with stationary points
only, and 25 cells in 2016, 8 of which were surveyed with
stationary points only (Figure 1). In 2015, we surveyed
eight cells with one stationary point, nine cells with two
stationary points, and three cells with three stationary
points. In 2016, we surveyed 10 cells with 1 stationary
point, 11 cells with 2 stationary points, and 4 cells with 3
stationary points. We were able to establish stationary
point surveys in all cells that were unsuitable for mobile
transect surveys, with the exception of one cell that was
primarily in the Atlantic Ocean and contained very little
accessible land. We moved all three stationary-point
survey locations within one cell to new locations in 2016
because of concerns with long-term access. Stationary
point surveys were conducted on 147 occasions in 2015
and 200 occasions in 2016 and ranged in duration from
601 to 640 min/night (mean ¼ 615.7 min).

Species distributions
We recorded 61,397 and 65,727 call files in 2015 and

2016, respectively; 21,972 call files from 2015 and
42,960 call files from 2016 passed our custom noise
filter. After manually removing remaining noise files and
poor quality and non–search-phase calls, 15,292 iden-
tifiable bat call files from 2015 remained. We manually
classified 27,380 of the 2016 call files to species and
labeled the rest as unknown species or as containing no
bat calls.

Species distributions based on our detections varied
in how well they matched 2003 known distributions
and predicted distributions as well as by year (Table 2;
Figures 2, 3). Corynorhinus rafinesquii (CORA) was the
only species known to occur in the state that we never
detected during our surveys. In 2015, we detected
EPFULANO, LABOLASE, LACI, MYLU, evening bat
Nycticeius humeralis (NYHU), PESU, and Mexican free-
tailed bat Tadarida brasiliensis (TABR) in �50% of the
cells surveyed in their 2003 known ranges, while we
detected northern yellow bat Lasiurus intermedius
(LAIN), MYAU, MYLE, and MYSE in ,50% of the cells
within their 2003 known ranges (Table 2; Figure 2). In
2016, we detected LAIN, EPFULANO, LABOLASE, LACI,
MYLU, NYHU, PESU, and TABR in �50% of cells within
their 2003 known ranges, while we detected MYAU,
MYLE, and MYSE in ,50% of the cells within their 2003
known ranges (Table 2; Figure 2). We were able to
generate predicted range maps for six species from our
occupancy models (Neece et al. 2018), and all species
were detected in higher percentages of their predicted
range than their 2003 known ranges, except PESU in

Table 2. Number of North American Bat Monitoring Program (NABat) survey cells where we detected each bat species or species
group during NABat surveys in South Carolina in summer 2015 and 2016. ‘‘% within range’’ and ‘‘% within prediction’’ represent the
percentage of cells surveyed within each species’ 2003 known range, and predicted range (Neece et al. 2018), respectively, in which
each species or species group was detected each year. ‘‘# outside range’’ columns indicate number of cells surveyed outside each
species’ 2003 known range in which they were detected each year.

Speciesa 2015 2016

% within

range 2015

% within

range 2016

% within

prediction 2015

% within

prediction 2016

# outside

range 2015

# outside

range 2016

CORA 0 0 0.0 0.0 NA NA 0 0

LAIN 3 7 37.5 63.6 50.0 100.0 0 0

EPFULANO 30 28 85.7 73.7 NA NA 0 0

LABOLASE 35 38 100.0 100.0 NA NA 0 0

LACI 6 8 100.0 50.0 23.5 21.1 4 7

MYAU 11 7 47.6 25.0 NA NA 1 1

MYLE 1 0 20.0 0.0 NA NA 0 0

MYLU 2 2 50.0 100.0 NA NA 1 0

MYSE 2 1 25.0 0.0 NA NA 1 1

NYHU 34 31 97.1 81.6 97.1 81.6 0 0

PESU 33 36 94.3 94.7 97.1 94.6 0 0

TABR 33 38 94.3 100.0 94.3 100.0 0 0

MYOTIS 3 4 NA NA NA NA NA NA

MYLELUSE 3 4 40.0 40.0 100.0 100.0 1 2

NA¼ nonapplicable.
a Corynorhinus rafinesquii (CORA); Lasiurus intermedius (LAIN); Eptesicus fuscus or Lasionycteris noctivagans (EPFULANO); Lasiurus borealis or L.

seminolus (LABOLASE); L. cinereus (LACI); Myotis austroriparius (MYAU); M. leibii (MYLE); M. lucifugus (MYLU); M. septentrionalis (MYSE); Nycticeius

humeralis (NYHU); Perimyotis subflavus (PESU); Tadarida brasiliensis (TABR); Myotis spp. (MYOTIS); and M. leibii, M. lucifugus, or M. septentrionalis

(MYLELUSE).
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Figure 2. Summer ranges for all bat species or species groupings within South Carolina (Menzel et al. 2003), and their detection/
nondetection histories during North American Bat Monitoring Program acoustic surveys in summer 2015 and 2016. Species codes
are as follows: Lasiurus intermedius (LAIN), Eptesicus fuscus or Lasionycteris noctivagans (EPFULANO), Lasiurus borealis or L. seminolus
(LABOLASE), L. cinereus (LACI), Myotis austroriparius (MYAU), M. leibii (MYLE), M. lucifugus (MYLU), M. septentrionalis (MYSE), Nycticeius
humeralis (NYHU), Perimyotis subflavus (PESU), Tadarida brasiliensis (TABR), and MYLE, MYLU, or MYSE (MYLELUSE).
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2016 and LACI in both years (Table 2; Figure 3). All
species except LACI were detected in �50% of the
surveyed cells within their predicted distributions
(Table 2). We also detected species outside of their
2003 known ranges. We detected LACI both years in a
cell 28 km outside its known range, and in nine other
cells, one year each, up to 353 km outside its known
range (Table 2; Figure 2). We detected MYAU in 2015 in
a cell 17 km outside its known range, and in 2016 in a
cell 72 km outside its known range (Table 2; Figure 2).
In 2015, we detected MYLU in a cell 128 km outside its
known range (Table 2; Figure 2). We detected MYSE in
2015 in a cell 114 km outside its known range, and in
2016 in a cell 305 km outside its known range (Table 2;
Figure 2).

Detection probabilities

The top-ranked detection models differed substantial-

ly among species, but predictive performance was .0.70

for all species except PESU (area under curve ¼ 0.68;

Table 3). Only one top model, ‘‘ClutterþIssue,’’ was

shared by multiple species (LAIN, LABOLASE, and MYAU;

Table 3). ‘‘Issue,’’ ‘‘Clutter,’’ and ‘‘Duration’’ were

contained in top-ranked models for seven, five, and

three species, respectively. We did not observe support

for ‘‘Type’’ in top-ranked models for any species;

however, for all species except NYHU we observed

support for either ‘‘Clutter’’ or ‘‘Duration’’ (Table 3),

which were highly correlated with ‘‘Type’’ (Table S1,

Supplemental Material).

Figure 3. Predicted distribution maps and detection histories in South Carolina for bat species based on nonnull top-ranked
occupancy models (see Table 3). Gray shaded areas represent 10 3 10 km NABat cells where models predicted �50% probability of
occupancy. See Table S3 (Supplemental Material) for covariate effects used to generate distribution maps. Species codes are as
follows: Lasiurus intermedius (LAIN); Lasiurus cinereus (LACI); Myotis leibii, M. lucifugus, or M. septentrionalis (MYLELUSE); Nycticeius
humeralis (NYHU); Perimyotis subflavus (PESU); and Tadarida brasiliensis (TABR).
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‘‘Duration’’ was in the top-ranked models for three
species (LACI, MYAU, and PESU; Table 3). As we
predicted, the effects of ‘‘Duration’’ on detection
probabilities were positive (Table 4). Over the range of
survey duration (1–640 min), detection probability
increased from 0.19% to 23% for LACI (which was never
detected on mobile surveys), 7.9% to 44% for MYAU, and
60% to 85% for PESU (Figure 4). Additionally, as we
predicted, these three species had higher probabilities of

detection at stationary points than on mobile transect
surveys (Figure 4).

We observed support for an effect of ‘‘Clutter’’ on
LAIN, EPFULANO, LABOLASE, MYLELUSE, and TABR (Table
3). As we predicted, LAIN, EPFULANO, LABOLASE, and
TABR detection probabilities declined with increasing
clutter (Figure 5; Table 4); and detection probabilities
were significantly higher in at least one stationary-point
clutter class than in mobile transects for LAIN, EPFULA-

Table 3. Top detection probability models (total weights �0.95) for each bat species or species group detected during North
American Bat Monitoring Program acoustic surveys in South Carolina during summer 2015 and 2016. Models are ordered from
highest to lowest performance based on the Widely Applicable Information Criterion (WAIC). Model weights based on WAIC scores
are shown. ‘‘AUC’’ is the area under the receiver operating curve and represents the predictive power of the model, with 0.5
indicating no predictive power and 1.0 indicating perfect predictive power.

Speciesa Modelb WAIC DWAIC Relative likelihood Weight AUC

LAIN ClutterþIssue 124.6 0.0 1.00 0.33 0.99

ClutterþIssueþTemp 125.3 0.7 0.70 0.23

ClutterþIssueþRain 125.8 1.2 0.55 0.18

Issue 126.1 1.5 0.47 0.15

IssueþTemp 127.9 3.3 0.19 0.06

EPFULANO ClutterþIssueþDateþTempþRHþWindþRain 440.0 0.0 1.00 1.00 0.88

LABOLASE ClutterþIssue 127.4 0.0 1.00 0.45 0.70

ClutterþIssueþWind 127.7 0.3 0.86 0.38

ClutterþIssueþRain 129.7 2.3 0.32 0.14

LACI DurationþTemp 172.1 0.0 1.00 0.38 0.93

Duration 173.3 1.2 0.55 0.21

Type 174.2 2.1 0.35 0.13

DurationþTempþRH 175.0 2.9 0.23 0.09

DurationþRH 175.1 3.0 0.22 0.08

Clutter 175.9 3.8 0.15 0.06

MYAU DurationþIssue 214.7 0.0 1.00 0.45 0.90

DurationþIssueþTemp 215.7 1.0 0.61 0.27

DurationþIssueþRain 216.9 2.2 0.33 0.15

IssueþTemp 220.1 5.4 0.07 0.03

Issue 220.2 5.5 0.06 0.03

DurationþTemp 221.1 6.4 0.04 0.02

MYLELUSE ClutterþIssue 83.2 0.0 1.00 0.66 0.97

ClutterþIssueþRain 85.0 1.8 0.41 0.27

Clutter 88.7 5.5 0.06 0.04

NYHU IssueþDateþWind 457.8 0.0 1.00 0.44 0.73

IssueþDate 458.7 0.9 0.64 0.28

IssueþWind 459.7 1.9 0.39 0.17

Issue 462.3 4.5 0.11 0.05

DateþWind 463.9 6.1 0.05 0.02

PESU DurationþDate 472.4 0.0 1.00 0.51 0.68

DurationþDateþRain 473.5 1.1 0.58 0.29

DurationþIssueþDateþTempþRHþWindþRain 477.4 5.0 0.08 0.04

Duration 477.5 5.1 0.08 0.04

Clutter 477.7 5.3 0.07 0.04

Type 478.6 6.2 0.05 0.02

TABR ClutterþRHþIssue 392.4 0.0 1.00 0.61 0.88

ClutterþIssue 394.8 2.4 0.30 0.18

ClutterþIssueþRain 395.8 3.4 0.18 0.11

ClutterþIssueþDateþTempþRHþWindþRain 396.2 3.8 0.15 0.09

Duration¼ the length of the survey period in minutes; Clutter¼categorical with mobile transect (0) and low- (1), medium- (2), or high- (3) vegetation-

clutter stationary point; Date¼ Julian day of the survey occasion; Issue¼ equipment malfunction; Temp (temperature), RH (relative humidity), Wind

(wind speed)¼mean values during the survey period; Rain¼ categorical with either no rain (0) or rain (1) during the survey period.
a Lasiurus intermedius (LAIN); Eptesicus fuscus or Lasionycteris noctivagans (EPFULANO); Lasiurus borealis or L. seminolus (LABOLASE); L. cinereus (LACI);

Myotis austroriparius (MYAU); Myotis leibii, M. lucifugus, or M. septentrionalis (MYLELUSE); Nycticeius humeralis (NYHU); Perimyotis subflavus (PESU);

and Tadarida brasiliensis (TABR).
b ‘‘Type’’ is mobile survey (0) or stationary point survey (1).
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NO, and MYLELUSE (Figure 5). Therefore, these results
also supported our prediction that stationary points
would yield higher probabilities of detection than mobile
transects for these species. Contrary to what we
predicted, detection probability was significantly greater
at high-clutter points than along mobile transects or low-
clutter points for the MYLELUSE group, and did not differ
between mobile transects and stationary points for TABR
(Figure 5).

We found support for an effect of ‘‘Date’’ for
EPFULANO, NYHU, and PESU (Table 3). ‘‘Date’’ had a
significant positive effect on detection probabilities of
EPFULANO and PESU, contrary to what we predicted,
and a negative but nonsignificant effect on detection
probability of NYHU (Table 4; Table S2, Supplemental
Material). Detection probability from the first day (Julian
day 133) to the final day (Julian day 198) increased from
18% to 89% for EPFULANO and 70% to 87% for PESU. As
we predicted, detection probabilities of LABOLASE,
NYHU, and TABR were not significantly affected by
‘‘Date’’ (Table 4; Table S2, Supplemental Material). We
observed support for an effect of ‘‘Issue’’ for seven (LAIN,
EPFULANO, LABOLASE, MYAU, MYLELUSE, NYHU, and
TABR) of the nine species (Table 3). Detection probabil-
ities significantly declined with the occurrence of ‘‘Issue’’
for all species except LAIN, where the effect was
significantly positive, and EPFULANO, where the effect
was negative but nonsignificant (Table 4; Table S2,
Supplemental Material).

Although we predicted detection probabilities of all
species would be affected by weather covariates, we
only found significant effects in three cases (Table 4).
Over the range of temperatures (12–32C), detection
probability of EPFULANO increased from 13% to 86%,
and detection probability of LACI decreased from 16% to
1.8%. ‘‘Humidity’’ had a positive effect on detection
probabilities of EPFULANO and TABR, but it was only
statistically significant for the latter (Table 4; Table S2,
Supplemental Material), where detection probability

increased from 78% to 92% over the range of
‘‘Humidity’’ (43.5–100%). We hypothesized a negative
effect of wind speed and rain on detection probability,
but ‘‘Wind’’ was only retained in top-ranked models for
EPFULANO and NYHU, and ‘‘Rain’’ was only retained in
the top-ranked model for EPFULANO (Table 4). In all
cases the effects were negative but nonsignificant (Table
S2, Supplemental Material).

Based on the top-ranked detection models, we found
great variability in the average detection probabilities
among species. Mean estimated detection probabilities
ranged from 0.04 to 0.98 (Table 5). All detection models
we tested converged well, with no R-hat values
exceeding 1.1.

Discussion

We demonstrated that state-wide implementation of
NABat acoustic surveys is feasible if there is strong
coordination and participation of volunteers and per-
sonnel from state and federal agencies. Further, we
demonstrated that data collected from these surveys can
provide valuable, large-scale information about species
distributions and detection probabilities. We found that
species detections appear to more closely match
predicted distributions from our surveys than known
range maps from 2003. We also found that it is important
to control for variation in detection probabilities among
species and survey occasions and that multiple factors
should be considered when conducting NABat surveys.

With one lead coordinator, we were able to follow the
NABat guidelines to establish our goal of 30 mobile
transects and �1 stationary point survey within 25 cells.
Public land managers and private landowners we
contacted were willing to grant permission to conduct
stationary surveys on their property, suggesting that
NABat stationary-point surveys are feasible even in areas
with few public lands. We established three stationary
point surveys in each cell in northwestern South

Table 4. Estimated effects of coefficients from top-ranked detection models for each bat species or species group detected during
North American Bat Monitoring Program acoustic surveys across South Carolina during summer 2015 and 2016.

Speciesa Type Duration Clutter Date Issue Temp RH Wind Rain

LAIN 0 0 �* 0 þ* 0 0 0 0

EPFULANO 0 0 �* þ* � þ* þ � �
LABOLASE 0 0 �* 0 �* 0 0 0 0

LACI 0 þ* 0 0 0 �* 0 0 0

MYAU 0 þ* 0 0 �* 0 0 0 0

MYLELUSE 0 0 þ* 0 �* 0 0 0 0

NYHU 0 0 0 � �* 0 0 � 0

PESU 0 þ* 0 þ* 0 0 0 0 0

TABR 0 0 �* 0 �* 0 þ* 0 0

þ¼ positive effect,�¼ negative effect; 0¼ coefficient not retained in a top-ranked model; *¼ the effect was statistically significant; Type¼mobile

survey (0) or stationary point survey (1); Duration¼ the length of the survey period in minutes; Clutter¼ categorical with mobile transect (0) and low-

(1), medium- (2), or high- (3) vegetation-clutter stationary point; Date ¼ Julian day of the survey occasion; Issue ¼ equipment malfunction; Temp

(temperature), RH (relative humidity), Wind (wind speed)¼mean values during the survey period; Rain¼ is categorical with either no rain (0) or rain

(1) during the survey period.
a Lasiurus intermedius (LAIN); Eptesicus fuscus or Lasionycteris noctivagans (EPFULANO); Lasiurus borealis or L. seminolus (LABOLASE); L. cinereus (LACI);

Myotis austroriparius (MYAU); Myotis leibii, M. lucifugus, or M. septentrionalis (MYLELUSE); Nycticeius humeralis (NYHU); Perimyotis subflavus (PESU);

and Tadarida brasiliensis (TABR).
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Figure 4. Estimated effects of acoustic survey duration (minutes) on the probability of detection for bat species during North
American Bat Monitoring Program acoustic surveys in summer 2015 and 2016 across South Carolina with Duration retained in their
top-ranked model. Duration ranged from 1 to 99 min on mobile transect surveys, and 601 to 640 min on stationary point surveys.
Gray shading indicates the 95% credible interval. Species codes are as follows: Lasiurus cinereus (LACI), Myotis austroriparius (MYAU),
and Perimyotis subflavus (PESU).
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Carolina, where public land is more common; but due to
the lack of public lands within many cells, 40% of the
cells that we surveyed had only one stationary point. If
time and effort can be dedicated to identifying and
contacting private landowners, it may be possible to
establish two to four points within each cell where public
land is not prevalent.

We determined NABat acoustic surveys were effective
at monitoring all species except CORA, MYAU, MYLE,
MYLU, and MYSE. However, our results are based on the
assumption that identification of acoustic files were
accurate although we were not able to quantify our error
rate. Regardless of whether it is done manually or with
the aid of an auto-identification program, bat acoustic
identification is rarely 100% accurate because of a variety

of reasons including the quality of the reference library,
the effects of habitat on call structure, and age, sex, and
geographic variation in call structure (Russo and Voight
2016; Russo et al. 2018). Some auto-identification
programs provide estimates of error, but false positives
still occur (Clement et al. 2014; Rojas et al. 2019), which
can be detected by manual vetting (Fritsch and Bruckner
2014). Thus, as with all studies based on bat acoustic
data, results must be viewed with some caution and
extra-range detections should be verified with mist-
netting. For example, we detected MYSE in the Coastal
Plains, which is far outside the known range of MYSE in
South Carolina (Figure 2). However, mist-netting efforts
approximately 93 km northeast and 72 km southwest
from our detection in the Coastal Plain resulted in the

Figure 5. Mean estimated detection probabilities at each vegetation clutter level for bat species or species groupings with ‘‘Clutter’’
retained in their top-ranked models from North American Bat Monitoring Program acoustic surveys conducted across South Carolina
during summer 2015 and 2016. Transect is the reference value, and Low, Medium, and High are categorical levels of clutter at
stationary points. Blue bars indicate 95% credible intervals. Within species, clutter levels that share a letter above their intervals are
not significantly different from one another. Species codes are as follows: Lasiurus intermedius (LAIN); Eptesicus fuscus or Lasionycteris
noctivagans (EPFULANO); Lasiurus borealis or L. seminolus (LABOLASE); Myotis leibii, M. lucifugus, or M. septentrionalis (MYLELUSE);
and Tadarida brasiliensis (TABR).
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capture of MYSE in 2016 and 2017, corroborating our
extrarange acoustic detections (White et al. 2018).

Most species detections more closely matched pre-
dicted distributions than their 2003 known ranges. This
suggests that the distribution of those species has either
changed since 2003, or that we conducted more
thorough surveys throughout the state than historical
efforts. For LACI and MYLELUSE in particular, which were
detected well outside their historical range, surveying
more cells with either acoustics or mist-netting in
extrarange detection areas may improve current range
maps. This is particularly important because the four
species we detected outside their 2003 known ranges,
including three Myotis species, are all considered species
of greatest conservation need within the state by the
SCDNR (South Carolina Department of Natural Resources
2015).

Compared with species with statewide distributions,
we detected species with more limited distributions,
especially the Myotis species, in lower percentages of
cells within their 2003 known ranges. We found higher
detection probabilities of MYLELUSE in high-clutter
habitats than low- and medium-clutter habitats. Howev-
er, many of the sites we selected for stationary point
surveys were along forest edges and in less cluttered
areas to decrease distortion of bat echolocation calls and
increase detection range, which may account for the
small number of detections of MYLELUSE in their known
ranges. Additionally, all Myotis species’ 2003 known
ranges in South Carolina except that of MYAU overlap
the area impacted by WNS. White-nose syndrome has
contributed to declines of MYLU and MYSE in South
Carolina (Loeb et al. 2016), and may have led to low
acoustic detections.

We observed great variability in the top-ranked
detection model among species, but predictive perfor-
mance of most models was very high. ‘‘Issue’’ was the
most commonly retained covariate in top-ranked models
among species, likely because it negatively impacts the

acoustic detector itself. This result emphasizes the
importance of fully completing mobile transect surveys
and taking measures to ensure stationary point detectors
do not fall over (e.g., anchoring, staking, or attaching
guy-lines to tripods or poles). The significant positive
association of LAIN detection probability with survey
issue seems counterintuitive but may have been due to
an artifact of detectors at two stationary points where
LAIN were detected having fallen over but still function-
ing and recording bat calls.

‘‘Clutter’’ was another commonly supported predictive
covariate, but the effects varied by species and appeared
to be related to the clutter adaption of each species.
LAIN, EPFULANO, and TABR are considered open-
adapted species (Menzel et al. 2005; Loeb and O’Keefe
2006) and we accordingly found negative effects of
increasing vegetation clutter for these species. Myotis
species are considered clutter-adapted species (Patriquin
and Barclay 2003; Starbuck 2013), and accordingly, we
found the probability of detecting MYLELUSE was very
high at high-clutter stationary points and low at low- and
medium-clutter stationary points and along mobile
transects. However, it must be noted that for modeling
purposes it was necessary to combine all Myotis
detections other than those of MYAU. Although this
may have obscured some subtle differences in habitat
use among MYLU, MYLE, and MYSE, the strong effect of
‘‘Clutter’’ on MYLELUSE suggests that combining species
did not significantly affect our results. LABOLASE are
considered open- or semi-clutter-adapted species (Men-
zel et al. 2005; Loeb and O’Keefe 2006; Starbuck et al.
2015), and we found detection probabilities did not
significantly differ among mobile transect and stationary
point surveys, except at high-clutter points where
detection probability was significantly lower. Our results
suggest researchers conducting NABat stationary-point
surveys should consider selecting locations from a range
of vegetation clutter amounts, not just open areas, to
increase the probability of detecting Myotis and other
clutter-adapted species.

‘‘Duration’’ was retained in top-ranked models for
LACI, MYAU, and PESU. Longer duration surveys may
increase the chance of bats encountering detectors
during a survey occasion. We never detected LACI on
mobile surveys, unlike Whitby et al. (2014), which may be
due to its migratory behavior (Cryan 2003). Lasiurus
cinereus individuals may have been moving north at the
beginning of our survey season and we may have
detected transient individuals at stationary points, but
not at mobile transects because stationary point surveys
were conducted during twice as many nights and had
longer durations than mobile transect surveys.

Although survey method (i.e., ‘‘Type’’) was not
retained in the top model for any species, six out of
nine bat species had significantly higher probabilities of
detection at stationary points than on mobile transect
surveys, similar to other studies (Tonos et al. 2014;
Whitby et al. 2014; Braun de Torrez et al. 2017). In
contrast, detections of bats in Texas are greater along
mobile transects than at stationary points, possibly due
to the abundance of TABR in their study area (Fisher-

Table 5. Mean estimated detection probabilities (Mean P) and
95% credible intervals (Lower CI and Upper CI) based on the
top-ranked detection model for each bat species and species
group detected during North American Bat Monitoring
Program acoustic surveys across South Carolina during summer
2015 and 2016.

Speciesa Mean P Lower CI Upper CI

LAIN 0.16 0.01 0.97

EPFULANO 0.77 0.17 0.99

LABOLASE 0.98 0.76 0.99

LACI 0.04 8E-6 0.39

MYAU 0.26 0.03 0.51

MYLELUSE 0.10 8E-4 0.77

NYHU 0.81 0.56 0.91

PESU 0.81 0.66 0.91

TABR 0.86 0.52 0.97

a Lasiurus intermedius (LAIN); Eptesicus fuscus or Lasionycteris noctiva-

gans (EPFULANO); Lasiurus borealis or L. seminolus (LABOLASE); L.

cinereus (LACI); Myotis austroriparius (MYAU); Myotis leibii, M. lucifugus,

or M. septentrionalis (MYLELUSE); Nycticeius humeralis (NYHU);

Perimyotis subflavus (PESU); and Tadarida brasiliensis (TABR).
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Phelps et al. 2017). We similarly found that detection
probabilities of TABR along mobile transects were high
(Figure 5). We also found that detection probabilities of
LABOLASE along mobile transects did not differ from
those at medium- and low-clutter stationary points.
Overall, our results suggest that stationary points may be
more effective than mobile transects for detecting some
species, but mobile transects may still be suitable in
cases where it is not possible or feasible to conduct
stationary point surveys, even for species with low
probabilities of detection on mobile transects. Positive
effects of increasing survey duration suggest higher
probabilities of detection could be achieved with longer
mobile transects or multiple passes within one night, but
further research is needed.

In general, it appears that NABat survey guidelines
appropriately control for reproductive phenology, sea-
sonal activity patterns, and weather effects in South
Carolina. We hypothesized ‘‘Date’’ would be a significant
factor for detection of species with limited distributions,
but we found only significant positive effects for
EPFULANO and PESU, both of which had statewide
distributions. This may have been due to increasing
levels of activity as the summer progressed, or perhaps
higher abundance in cells sampled later in the season
(MacKenzie 2005). Perimyotis subflavus are positively
associated with forest cover (Farrow and Broders 2011).
Even though PESU are experiencing significant declines
in northwestern South Carolina (S. Loeb, unpublished
data), which we sampled later in the season, these cells
were dominated by forests; whereas, those sampled
earlier in the season were dominated by agriculture and
forested wetlands. Higher forest cover may have resulted
in higher probabilities of detection later in the season.
Although most LACI in South Carolina are migratory, we
did not find an effect of ‘‘Date’’ on their probability of
detection. We detected them primarily early in the
season, perhaps before they had migrated north, or late
in the season when we might have been detecting
resident individuals in the mountainous regions. Weather
covariates rarely had a significant effect on bat detection
probabilities in this study. However, it is possible that our
use of weather station data did not capture variation in
wind speed, temperature, and relative humidity at the
site level. Therefore, we encourage researchers to
investigate the potential impacts of fine-scale weather
conditions on NABat survey results.

We found very high mean estimated probabilities of
detection for EPFULANO, LABOLASE, NYHU, PESU, and
TABR. These species are known to occur throughout our
study region and only PESU is affected by WNS. We
found low probabilities of detection for other species,
and we never detected CORA even though they are
known to occur in the state (e.g., Lucas et al. 2015; Loeb
2017). Corynorhinus rafinesquii are less likely to be
detected with acoustic surveys than other methods
because of their relatively quiet echolocation calls
(Clement and Castleberry 2011; although, see Comer et
al. 2014). Even though we combined MYLE, MYLU, and
MYSE into one group, the mean estimated detection
probability remained very low (0.10). These species have

relatively high-frequency, short-duration echolocation
pulses, which attenuate more rapidly than lower
frequency calls and often resemble feeding buzzes of
other species, so some of their calls may have been
dismissed during classification. Also, MYLU and MYSE
populations have declined in South Carolina because of
WNS, and mist-netting efforts have captured fewer MYLU
and MYSE than in the past (Loeb et al. 2016). Thus, lower
rates of positive identification in combination with
relatively low abundance may be driving low probabil-
ities of detection. Our mean estimated detection
probability for MYAU was also relatively low. Myotis
austroriparius have specific habitat requirements, prefer-
ring low-lying forested wetlands and roosts in large tree
cavities in bottomland hardwood forests (Gooding and
Langford 2004; Carver and Ashley 2008; Bender et al.
2015). The NABat priority survey cells are randomly
distributed, so rare habitats can be missed, decreasing
the probability of detection. We found the lowest mean
estimated probability of detection (0.04) for LACI, which
have a small known summer distribution in South
Carolina and exhibit migratory behavior (Cryan 2003).
Additionally, LACI are high-flying bats (Kalcounis et al.
1999) and often do not echolocate during flight
(Gorresen et al. 2017; Corcoran and Weller 2018), which
would further reduce their probability of detection.

Overall, it appears that NABat acoustic survey methods
were suitable for monitoring most species in South
Carolina, but not appropriate for others (e.g., CORA).
Further, we found that survey method affects the
probability of detecting many species, and that mobile
transect surveys may be more effective for some species
than for others. We had no or very low acoustic
detections of CORA, LAIN, and Myotis species, so in
addition to NABat acoustic surveys, it may be necessary
to conduct hibernacula or summer roost surveys, mist-
netting, and possibly active acoustic surveys for moni-
toring these species. We also found that biological and
behavioral differences among species can influence
whether survey variables affect their probabilities of
detection as well as whether the effects are positive or
negative. To effectively utilize the results of acoustic
surveys when determining management actions, map-
ping species distributions, and evaluating bat activity
and habitat use, we suggest that researchers record
survey variables and determine how they may affect the
probability of detecting bat species.

Management Implications

The results of our study demonstrate that NABat
surveys are a feasible means of conducting state-wide
monitoring of bats but also demonstrate some of the
pitfalls of this type of monitoring. For example, there are
higher detection probabilities at stationary points than
mobile transects for most species, so we suggest
dedicating time toward establishing at least two
stationary point surveys in each of the top-priority cells.
Stationary points should be in a variety of habitats within
each cell, even in areas with vegetation clutter, because
we found that detection of clutter-adapted Myotis
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species was significantly higher in more cluttered areas.
We also recommend taking detailed, accurate measures
of survey-level variables, particularly whether a survey
issue occurred (i.e., detector malfunction or incomplete
mobile transect) and the vegetation clutter around
stationary points, to account for variation in detection
probabilities. We realize government agencies and
nongovernmental organizations may not have qualified
personnel or financial resources to manually classify tens
of thousands of echolocation calls to species each year,
and it may therefore be necessary to rely on automated
classification software. If automated software is used, we
recommend vetting calls or estimating false-positive
rates (Banner et al. 2018). When extrarange acoustic
detections occur, we recommend conducting further
studies in these areas (e.g., mist-netting) to verify the
acoustic detections and to learn more about populations
in these areas.

Supplemental Material

Please note: The Journal of Fish and Wildlife Management
is not responsible for the content or functionality of any
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chrift für Säugetierkunde 85:37–46.

Arnett EB, Baerwald EF. 2013. Impacts of wind energy
development on bats: implication for conservation.
Pages 435–456 in Adams RA, Pedersen SC, editors. Bat
evolution, ecology, and conservation. New York, New
York: Springer ScienceþBusiness Media.

Banner KM, Irvine KM, Rodhouse TJ, Wright WJ,
Rodriguez RM, Litt AR. 2018. Improving geographically
extensive acoustic survey designs for modeling
species occurrence with imperfect detection and
misidentification. Ecology and Evolution 8:6144–6156.

Bass HE, Sutherland LC, Zuckerwar AJ. 1990. Atmospheric
absorption of sound: update. Journal of the Acoustical
Society of America 88:2019–2021.

Bender MJ, Castleberry SB, Miller DA, Wigley BT. 2015.
Site occupancy of foraging bats on landscapes of
managed pine forest. Forest Ecology and Manage-
ment 336:1–10.

Braun de Torrez EC, Wallrichs MA, Ober HK, McCleery RA.
2017. Mobile acoustic transects miss rare bat species:
implications of survey method and spatio-temporal
sampling for monitoring bats. PeerJ 5:e3940.

Britzke ER, Duchamp JE, Murray KL, Swihart RK, Robbins
LW. 2011. Acoustic identification of bats in the eastern
United States: a comparison of parametric and

nonparametric methods. Journal of Wildlife Manage-
ment 75:660–667.

Britzke ER, Gillam EH, Murray KL. 2013. Current state of
understanding of ultrasonic detectors for the study of
bat ecology. Acta Theriologica 58:109–117.

Broders HG, Forbes GJ, Woodley S, Thompson ID. 2006.
Range extent and stand selection for roosting and
foraging in forest-dwelling northern long-eared bats
and little brown bats in the Greater Fundy Ecosystem,
New Brunswick. Journal of Wildlife Management
70:1174–1184.

Carver BD, Ashley N. 2008. Roost tree use by sympatric
Rafinesque’s big-eared bats (Corynorhinus rafinesquii)
and southeastern myotis (Myotis austroriparius). Amer-
ican Midland Naturalist 160:364–373.

Clement MJ, Castleberry SB. 2011. Comparison of survey
methods for Rafinesque’s big-eared bats. Pages 147–
157 in Loeb SC, Lacki MJ, Miller DA, editors.
Conservation and management of eastern big-eared
bats: a symposium. U.S. Forest Service Southern
Research Station, General Technical Report SRS-145,
Asheville, North Carolina (see Supplemental Material,
Reference S1).

Clement MJ, Rodhouse TJ, Ormsbee PC, Szewczak JM,
Nichols JD. 2014. Accounting for false-positive acous-
tic detections of bats using occupancy models. Journal
of Applied Ecology 51:1460–1467.

Coleman LS, Ford WM, Dobony CA, Britzke ER. 2014. A
comparison of passive and active acoustic sampling
for a bat community impacted by white-nose syn-
drome. Journal of Fish and Wildlife Management
5:217–226.

Comer CE, Stuemke LA, Morrison ML, Maxey RW. 2014.
Comparison of systematic roost searches and acoustic
detection to determine occupancy of rare forest bats:
detection of forest bats. Wildlife Society Bulletin
38:103–110.

Corcoran AJ, Weller TJ. 2018. Inconspicuous echolocation
in hoary bats (Lasiurus cinereus). Proceedings of the
Royal Society B: Biological Sciences 285:20180441.

Cryan PM. 2003. Seasonal distribution of migratory tree
bats (Lasiurus and Lasionycteris) in North America.
Journal of Mammalogy 84:579–593.

Cumming GS. 2000. Using between-model comparisons
to fine-tune linear models of species ranges. Journal of
Biogeography 27:441–455.

Farrow LJ, Broders HG. 2011. Loss of forest cover impacts
the distribution of the forest-dwelling tri-colored bat
(Perimyotis subflavus). Mammalian Biology 76:172–179.

Federal Register. 2015. Endangered and threatened
wildlife and plants; threatened species status for the
northern long-eared bat with 4 (d) rule. Federal
Register 80:17974–18033.

Fisher-Phelps M, Schwilk D, Kingston T. 2017. Mobile
acoustic transects detect more bat activity than
stationary acoustic point counts in a semi-arid and
agricultural landscape. Journal of Arid Environments
136:38–44.

Implementing and Assessing the NABat Monitoring Program B.D. Neece et al.

Journal of Fish and Wildlife Management | www.fwspubs.org December 2019 | Volume 10 | Issue 2 | 407

https://doi.org/10.3996/092018-JFWM-087.S9
https://doi.org/10.3996/092018-JFWM-087.S9
http://digitalcommons.unl.edu/usfwspubs/453/
http://digitalcommons.unl.edu/usfwspubs/453/


Fritsch G, Bruckner A. 2014. Operator bias in software-
aided bat call identification. Ecology and Evolution
4:2703–2713.

Gooding G, Langford JR. 2004. Characteristics of tree
roosts of Rafinesque’s big-eared bat and southeastern
myotis in northeastern Louisiana. Southwestern Nat-
uralist 49:61–67.

Gorresen PM, Cryan PM, Montoya-Aiona K, Bonaccorso
FJ. 2017. Do you hear what I see? Vocalization relative
to visual detection rates of Hawaiian hoary bats
(Lasiurus cinereus semotus). Ecology and Evolution
7:6669–6679.

Hayes JP. 1997. Temporal variation in activity of bats and
the design of echolocation-monitoring studies. Jour-
nal of Mammalogy 78:514–524.

Hein CD, Castleberry SB, Miller KV. 2009. Site-occupancy
of bats in relation to forested corridors. Forest Ecology
and Management 257:1200–1207.

Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G,
Coulston J, Herold ND, Wickham JD, Megown K. 2015.
Completion of the 2011 National Land Cover Database
for the conterminous United States—representing a
decade of land cover change information. Photogram-
metric Engineering and Remote Sensing 81:345–354.

Johnson JB, Menzel MA, Edwards JW, Ford WM. 2002. A
comparison of 2 acoustical bat survey techniques.
Wildlife Society Bulletin 30:931–936.

Jones G, Jacobs D, Kunz T, Willig M, Racey P. 2009. Carpe
noctem: the importance of bats as bioindicators.
Endangered Species Research 8:93–115.

Kalcounis MC, Hobson KA, Brigham RM, Hecker KR. 1999.
Bat activity in the boreal forest: importance of stand
type and vertical strata. Journal of Mammalogy
80:673–682.

Kitzes J, Merenlender A. 2014. Large roads reduce bat
activity across multiple species. PLoS ONE 9(5):e96341.

Kunz TH. 2003. Censusing bats: challenges, solutions, and
sampling biases. Pages 9–19 in O’Shea TJ, Bogan MA,
editors. Monitoring trends in bat populations of the
United States and territories: problems and prospects.
U.S. Geological Survey, Biological Resources Division.
Information and Technology Report, USGS/BRD/ITR–
2003-003 (see Supplemental Material, Reference S2).

Kunz TH, Arnett EB, Erickson WP, Hoar AR, Johnson GD,
Larkin RP, Strickland MD, Thresher RW, Tuttle MD.
2007. Ecological impacts of wind energy development
on bats: questions, research needs, and hypotheses.
Frontiers in Ecology and the Environment 5:315–324.

Langwig KE, Frick WF, Bried JT, Hicks AC, Kunz TH, Marm
Kilpatrick A. 2012. Sociality, density-dependence and
microclimates determine the persistence of popula-
tions suffering from a novel fungal disease, white-nose
syndrome. Ecology Letters 15:1050–1057.

Law B, Gonsalves L, Tap P, Penman T, Chidel M. 2015.
Optimizing ultrasonic sampling effort for monitoring
forest bats. Austral Ecology 40:886–897.

Loeb SC. Unpublished data. Data from 2014 through
2019 in South Carolina hibernacula show a 91%
decline of Peimyotis subflavus.

Loeb SC. 2017. Adaptive response to land-use history
and roost selection by Rafinesque’s big-eared bats.
Journal of Mammalogy 98:560–571.

Loeb SC, O’Keefe JM. 2006. Habitat use by forest bats in
South Carolina in relation to local, stand, and
landscape characteristics. Journal of Wildlife Manage-
ment 70:1210–1218.

Loeb SC, Rodhouse TJ, Ellison LE, Lausen CL, Reichard JD,
Irvine KM, Ingersoll TE, Coleman JT, Thogmartin WE,
Sauer JR, Francis CM, Bayless, ML, Stanley TR, Johnson
DH. 2015. A plan for the North American bat
monitoring program (NABat). U.S. Department of
Agriculture Forest Service, Southern Research Station,
General Technical Report SRS-208, Asheville, North
Carolina (see Supplemental Material, Reference S3).

Loeb SC, Winters EA, Burns LKL, Sirajuddin P. 2016. Will
the South’s bats rise again? The devastating effects of
white-nose syndrome in South Carolina. Bat Research
News 57(4):76.

Lorch JM, Palmer JM, Lindner DL, Ballmann AE, George
KG, Griffin K, Knowles S, Huckabee JR, Haman KH,
Anderson CD, Becker PA, Buchanan JB, Foster JT,
Blehert, DS. 2016. First detection of bat white-nose
syndrome in western North America. mSphere
1(4):e00148–16.

Lucas JS, Loeb SC, Jodice PGR. 2015. Roost selection by
Rafinesque’s big-eared bats (Corynorhinus rafinesquii)
in a pristine habitat at three spatial scales. Acta
Chiropterologica 17:131–141.

MacKenzie DI. 2005. What are the issues with presence–
absence data for wildlife managers? Journal of Wildlife
Management 69:849–860.

Menzel JM, Menzel MA, Ford WM, Edwards JW, Sheffield
SR, Kilgo JC, Bunch MS. 2003. The distribution of the
bats of South Carolina. Southeastern Naturalist 2:121–
152.

Menzel JM, Menzel MA, Kilgo JC, Ford WM, Edwards JW,
McCracken GF. 2005. Effect of habitat and foraging
height on bat activity in the Coastal Plain of South
Carolina. Journal of Wildlife Management 69:235–245.

Murray KL, Britzke ER, Hadley BM, Robbins LW. 1999.
Surveying bat communities: a comparison between
mist nets and the Anabat II bat detector system. Acta
Chiropterologica 1:105–112.

Neece BD, Loeb SC, Jachowski DS. 2018. Variation in
regional and landscape effects on occupancy of
temperate bats in the southeastern U.S. PLos One
13:e0206857.

O’Donnell C. 2000. Influence of season, habitat, temper-
ature, and invertebrate availability on nocturnal
activity of the New Zealand long-tailed bat (Chalino-
lobus tuberculatus). New Zealand Journal of Zoology
27:207–221.

O’Farrell MJ, Bradley WG, Jones GW. 1967. Fall and winter
bat activity at a desert spring in southern Nevada.
Southwestern Naturalist 12:163.

O’Keefe JM, Loeb SC, Gerard PD, Lanham JD. 2013.
Effects of riparian buffer width on activity and

Implementing and Assessing the NABat Monitoring Program B.D. Neece et al.

Journal of Fish and Wildlife Management | www.fwspubs.org December 2019 | Volume 10 | Issue 2 | 408



detection of common bats in the Southern Appala-
chian Mountains. Wildlife Society Bulletin 37:319–326.

Patriquin KJ, Barclay RM. 2003. Foraging by bats in
cleared, thinned and unharvested boreal forest.
Journal of Applied Ecology 40:646–657.

Patriquin KJ, Hogberg LK, Chruszcz BJ, Barclay RMR. 2003.
The influence of habitat structure on the ability to
detect ultrasound using bat detectors. Wildlife Society
Bulletin 31:475–481.

Pauli BP, Badin HA, Haulton GS, Zollner PA, Carter TC.
2015. Landscape features associated with the roosting
habitat of Indiana bats and northern long-eared bats.
Landscape Ecology 30:2015–2029.

Racey PA. 1982. Ecology of bat reproduction. Pages 57–
104 in Kunz TH, editor. Ecology of bats. Boston:
Springer US.

Rebelo H, Tarroso P, Jones G. 2010. Predicted impact of
climate change on European bats in relation to their
biogeographic patterns. Global Change Biology
16:561–576.

Rojas VG, Loeb SC, O’Keefe JM. 2019. False-positive
occupancy models produce less-biased occupancy
estimates for a rare and elusive bat species. Journal of
Mammalogy 100:212–222.

Russo D, Ancillotto L, Jones G. 2018. Bats are still not
birds in the digital era: echolocation call variation and
why it matters for species identification. Canadian
Journal of Zoology 96:63–78.

Russo D, Voight CC. 2016. The use of automated
identification of bat echolocation calls in acoustic
monitoring: a cautionary note for sound analysis.
Ecological Indicators 66:598–602.

Rydell J. 1989. Feeding activity of the northern bat
Eptesicus nilssoni during pregnancy and lactation.
Oecologia 80:562–565.

South Carolina Department of Natural Resources. 2015.
South Carolina bat conservation plan. South Carolina
Department of Natural Resources, Columbia (see
Supplemental Material, Reference S4).

Starbuck C. 2013. Bat occupancy of forests and managed
savanna and woodland in the Missouri Ozark region.
Master’s thesis. University of Missouri - Columbia (see
Supplemental Material, Reference S5).

Starbuck CA, Amelon SK, Thompson FR. 2015. Relation-
ships between bat occupancy and habitat and
landscape structure along a savanna, woodland, forest
gradient in the Missouri Ozarks: bat occupancy in
savannas. Wildlife Society Bulletin 39:20–30.

Tonos JM, Pauli BP, Zollner PA, Haulton GS. 2014. A
comparison of the efficiency of mobile and stationary
acoustic bat surveys. Proceedings of the Indiana
Academy of Science 123:103–111.

Turner GG, Reeder DM. 2009. Update of white-nose
syndrome in bats, September 2009. Bat Research
News 50(3):47–53.

[ESA] U.S. Endangered Species Act of 1973, as amended,
Pub. L. No. 93-205, 87 Stat. 884 (Dec. 28, 1973).
Available: http://www.fws.gov/endangered/esa-
library/pdf/ESAall.pdf.

U.S. Environmental Protection Agency. 2011. U.S. Level III
and IV ecoregions of the continental United States.
Available: https://www.epa.gov/eco-research/level-iii-
and-iv-ecoregions-continental-united-states (June
2018).

U.S. Fish and Wildlife Service. 2014. White-nose syn-
drome: the devastating disease of hibernating bats in
North America (see Supplemental Material, Reference
S6).

U.S. Forest Service. 2015a. National Forest system roads.
U.S. Forest Service. Available at: https://data.fs.usda.
gov/geodata/edw/datasets.php (September 2019).

U.S. Forest Service. 2015b. Surface ownership parcels,
S_USA.BasicOwnership. Available at: https://data.fs.
usda.gov/geodata/edw/datasets.php (September
2019).

U.S. Geological Survey. 2014. NLCD 2011 land cover
(2011 edition, amended 2014) - National Geospatial
Data Asset (NGDA) land use land cover. U.S. Geological
Survey. Available at: https://databasin.org/datasets/
df04c191e0c54b96bfcc435b3117351b (September
2019).

U.S. Geological Survey. 2019. North American bat
monitoring program master sample. Available:
h t t p s : / / w w w . s c i e n c e b a s e . g o v / c a t a l o g / i t e m /
5474da02e4b04d7459a7ea82 (May 2019).

U.S. Geological Survey, National Geospatial Technical
Operations Center. 2014. USGS National Transporta-
tion Dataset (NTD) FileGDB 10.1. U.S. Geological
Survey. Available at: https://catalog.data.gov/dataset/
u s g s - n a t i o n a l - t r a n s p o r t a t i o n - d a t a s e t - n t d -
downloadable-data-collectionde7d2 (September
2019).

Whitby MD, Carter TC, Britzke ER, Bergeson SM. 2014.
Evaluation of mobile acoustic techniques for bat
population monitoring. Acta Chiropterologica
16:223–230.

White TM, Walea JE, Robinson J. 2018. New record of
northern long-eared bats in coastal South Carolina.
Southeastern Naturalist 17:N1–N5.

Wolbert SJ, Zellner AS, Whidden HP. 2014. Bat activity,
insect biomass, and temperature along an elevational
gradient. Northeastern Naturalist 21:72–85.

Yates MD, Muzika RM. 2006. Effect of forest structure and
fragmentation on site occupancy of bat species in
Missouri Ozark forests. Journal of Wildlife Manage-
ment 70:1238–1248.

Implementing and Assessing the NABat Monitoring Program B.D. Neece et al.

Journal of Fish and Wildlife Management | www.fwspubs.org December 2019 | Volume 10 | Issue 2 | 409

http://www.fws.gov/endangered/esa-library/pdf/ESAall.pdf
http://www.fws.gov/endangered/esa-library/pdf/ESAall.pdf
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
https://data.fs.usda.gov/geodata/edw/datasets.php
https://data.fs.usda.gov/geodata/edw/datasets.php
https://data.fs.usda.gov/geodata/edw/datasets.php
https://data.fs.usda.gov/geodata/edw/datasets.php
https://databasin.org/datasets/df04c191e0c54b96bfcc435b3117351b
https://databasin.org/datasets/df04c191e0c54b96bfcc435b3117351b
https://www.sciencebase.gov/catalog/item/5474da02e4b04d7459a7ea82
https://www.sciencebase.gov/catalog/item/5474da02e4b04d7459a7ea82
https://catalog.data.gov/dataset/usgs-national-transportation-dataset-ntd-downloadable-data-collectionde7d2
https://catalog.data.gov/dataset/usgs-national-transportation-dataset-ntd-downloadable-data-collectionde7d2
https://catalog.data.gov/dataset/usgs-national-transportation-dataset-ntd-downloadable-data-collectionde7d2

