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Abstract

Background: Camera traps present a valuable tool for monitoring animals but detect species imperfectly.
Occupancy models are frequently used to address this, but it is unclear what spatial scale the data represent.
Although individual cameras monitor animal activity within a small target window in front of the device, many
practitioners use these data to infer animal presence over larger, vaguely-defined areas. Animal movement is
generally presumed to link these scales, but fine-scale heterogeneity in animal space use could disrupt this
relationship.

Methods: We deployed cameras at 10 m intervals across a 0.6 ha forest plot to create an unprecedentedly dense
sensor array that allows us to compare animal detections at these two scales. Using time-stamped camera
detections we reconstructed fine-scale movement paths of four mammal species and characterized (a) how well
animal use of a single camera represented use of the surrounding plot, (b) how well cameras detected animals, and
(c) how these processes affected overall detection probability, p. We used these observations to parameterize
simulations that test the performance of occupancy models in realistic scenarios.

Results: We document two important aspects of animal movement and how it affects sampling with passive
detectors. First, animal space use is heterogeneous at the camera-trap scale, and data from a single camera may
poorly represent activity in its surroundings. Second, cameras frequently (14–71%) fail to record passing animals.
Our simulations show how this heterogeneity can introduce unmodeled variation into detection probability, biasing
occupancy estimates for species with low p.

Conclusions: Occupancy or population estimates with camera traps could be improved by increasing camera
reliability to reduce missed detections, adding covariates to model heterogeneity in p, or increasing the area
sampled by each camera through different sampling designs or technologies.
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Introduction
Global environmental change has increased the need for
rapid, large-scale surveys of ecological communities [38].
Such surveys are particularly important for mammals,
which are often at high risk for extinction but sparsely
monitored in the wild. Since most mammals are difficult
to see or catch directly, passive sampling devices have
become an increasingly popular alternative, particularly
camera traps for studying population size or distribu-
tions of terrestrial mammals [38]. However, statistical in-
terpretation of passive monitoring data is often
challenging. Imperfect detection is a major source of
error in large-scale biological surveys [42], including
those based on camera trapping. Unfortunately, most
mammals cannot be visually distinguished as individuals,
reducing the analytical options. Instead, many practi-
tioners use occupancy analysis to account for imperfect
detection when evaluating habitat preferences or distri-
bution [3].
Occupancy models analyze detection/non-detection

data as the result of two processes: occupancy (ψ) is the
probability of a species occurring within a spatial unit
(or “site”) during the sampling season, and detection
probability (p) is the probability that the species will be
detected when it occurs at a site [22]. Replicate sites,
and replicate observations at each site, are needed to es-
timate these parameters. In camera trap studies, practi-
tioners typically treat individual cameras as sites and
divide the data into temporal blocks (e.g. 1- or 5-day in-
tervals) to define replicate surveys at each camera [37].
Although estimates of occupancy in this framework

account for imperfect detection, it was not created for
surveys in continuous habitat [5, 6]. Its suitability for
camera trap data is debated due to a spatial mismatch
between the fine scale measured by each camera versus
the larger scale over which animals move [3, 6]. Al-
though animals move over larger spatial areas, each indi-
vidual camera monitors a small area of just a few square
meters [14, 31]. Data at these two scales are linked by
animal movement, but two critical details about this re-
lationship are unclear. First, it is unknown how well the
data from one camera represents its surroundings, or to
what scale this inference extends [3]. Most practitioners
presume their results are representative of large,
vaguely-defined areas, but some studies suggest other-
wise. For example Kays et al. [19] found little spatial
autocorrelation in detection rates past 25 m for five Cen-
tral American mammal species and Kolowski et al. [20]
found no spatial autocorrelation at any scale, suggesting
that cameras may represent small areas. While it might
be safe to extend the inference of species presence dir-
ectly in front of a camera trap to larger scales (e.g. home
range size), inferring absence over this larger area is
much more questionable. In this paper we consider the

area immediately in front of the camera trap as the site
that is occupied, and empirically evaluate the degree to
which this reflects the larger (0.6 ha) plot-level
occupancy.
The second issue relates to the assumption of site

“closure” implicit to occupancy analysis. Occupancy
models assume that surveyed locations remain either oc-
cupied or unoccupied throughout the entire sampling
season, which is obviously violated in camera trap sur-
veys since animals only briefly pass through the small
area monitored by each camera [6]. To relax this,
models assume that animals move in and out of sites at
random, and that site use is consistent across the sam-
pling season [21, 22]. However, this fundamentally
changes the definitions of occupancy and detection
probability, such that both parameters are related to ani-
mal movement at different time scales. Occupancy be-
comes “probability of use,” defined as the probability
that an animal will use the site at least once during the
study season [21, 22]. Likewise, detection probability be-
comes the probability of an animal passing a camera
(“availability”) and the camera successfully capturing a
usable photograph of the animal (“detectability”) during
a replicate time period [21]. Although this concept has
been described in general terms, the role of movement
in the detection process has not been formalized or ex-
plored with empirical data.
In this paper we empirically describe both the detec-

tion process and the spatial representativeness of an in-
dividual camera trap using an extremely saturated array
of cameras on a natural landscape. We use the camera
trap data to reconstruct animal movement paths at a 10
m resolution across a plot of forest, allowing us to dir-
ectly observe how representative single camera traps (10
m) are to a larger area (0.6 ha) and how animal move-
ment and camera performance influence detection prob-
ability. This approach allows us to separate to
components of detection probability into availability
(was the animal in the area) and detectability (did the
camera work as expected). We then simulate camera
data based on these observations to investigate how well
occupancy models might perform under realistic
scenarios.

Materials & methods
To document animal movements and camera efficacy on
a natural landscape, we deployed a fine-scale array of 56
newly purchased camera traps (Bushnell Trophy Cam
HD, IR flash units, 0.4 s trigger time for still photo-
graphs) within a 0.6 ha plot of loblolly pine (Pinus taeda)
forest in Schenck Memorial Forest, North Carolina.
Cameras were placed systematically at 10 m intervals,
forming a 70 m by 80m rectangular grid that we oper-
ated continuously during June 13 – July 11, 2013 (Fig. 1).
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The close spacing of cameras was intended to allow us
to document the movement of all individuals of larger
mammal species through the area, which would be ex-
pensive or impossible with animal-tracking approaches
due to the difficulty of capturing and collaring 100% of a
population. This setup allowed us to consider camera ef-
ficacy at the camera-level (10 m) and relate it to the lar-
ger surrounding plot (0.6 ha), although we cannot
extrapolate to larger scales. The terrain of the plot was
relatively flat, and the vegetation was relatively homoge-
neous with a relatively open understory, except for some
new growth along one trail that cut through the south-
west corner. We used identical settings at all cameras to
ensure consistency across the grid: cameras were set on
trees at knee height (0.5 m), parallel to the ground, fa-
cing north, with synchronized clocks. Each camera was
set to high trigger sensitivity with no quiet period be-
tween photographs. All camera traps triggered on a per-
son walking 10m in front, despite the presence of
understory vegetation. Each individual camera trap was
considered a sample unit, and our analyses are designed
to quantify their performance and how well they repre-
sent the larger area.
This grid intensively sampled animal movement pro-

viding unique insight into the process linking fine-scale
animal movement to camera detections. Many practi-
tioners would consider an area the scale of our plot (or
larger) as one camera “site,” monitored by a single

camera station [5]. Instead, we vastly increased survey
effort, yielding over 1430 trap-nights of continuous data
from one plot. Animals moving across the grid generally
passed in front of several cameras, allowing us to infer
movement paths. We used these reconstructed paths to
assess how well the camera traps detected different
mammal species.

Movement paths
We used our intensive sampling array to reconstruct
fine-scale movement paths of unmarked animals moving
across the grid, providing the basis for subsequent ana-
lyses (Table 1, Fig. 2). To do this, we first referenced
every animal photograph to a specific place and time on
the grid based on the associated camera ID and time-
stamp. In some cases, animals were simultaneously
photographed by two camera traps. When this occurred,
we only used the data from the closer camera to avoid
double-counting the animal. Cameras recorded 3 con-
secutive photographs for each trigger, and immediately
retriggered if motion was still detected. We combined
consecutive images at the same camera into one ‘detec-
tion’ if they were < 60s apart.
We then linked associated detections together into

movement paths (Fig. 2). This involved a three-step
process. First, we grouped photographs into grid-level
events using a simple heuristic rule chosen based on
temporal autocorrelation in animal detections

Fig. 1 Location of fine-scale camera grid in Schenck Memorial Forest, North Carolina, USA. Camera traps were deployed at 10 m intervals, forming
a 70 m by 80 m grid within a forested area. A dry creek bed ran along the northeastern corner of the grid, connecting to a larger stream off-grid
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(Additional file 1). If photographs of the same species
occurred within 5 min of one another, we grouped them
together as an event that would then be examined closer
in step two. We also included photographs that con-
tained no animals (i.e., motion sensor triggered but no
animal in view) or unidentifiable animals as putative
missed detections if they occurred within 5 min of a
known animal photograph. Next, we ordered photo-
graphs chronologically within these grid-level events
using both their exact timestamps as well as the move-
ment direction of animals within photos. This allowed
us to resolve ambiguous cases where pictures occurred
within the same minute or where multiple individuals

visited the grid simultaneously. Finally, we constructed
movement paths by connecting the shortest Euclidean
distance between successive photographs. Some events
only contained one detection, often occurring near edge
of the grid. In these cases, we assumed the path that
intercepted the fewest camera traps. While not perfect,
this approach gives estimated paths of animals moving
through the plot with conservative assumptions that
minimize the estimated path length.

Fine-scale space use
We used these estimated movement paths and fine-scale
capture rates (photo sequences per day at individual
cameras) to identify where animals moved within the
grid with 10m accuracy during three 9-day intervals.
We did not formally consider the fine scale heterogen-
eity of the landscape on our models. However, we did a
post-hoc informal consideration of the space use pat-
terns we observed in the animals against fine-scale habi-
tat features and animal behaviors caught on camera to
explore biological reasons for these patterns. These data
allowed us to describe how animal space use can vary at
a fine scale and quantify how well individual camera
traps represent activity in their surroundings.

Components of the detection process
We also used the reconstructed movement paths to as-
sess the relative effects of animal movement (“availabil-
ity”) and sensor efficacy on detection probability. We
conceptualized detection as a four-step process. For a
camera to photograph an individual animal, the animal

Fig. 2 Reconstructed raccoon movement path. Three cameras photographed a raccoon as it moved east over the grid at 2:59 AM on June 26,
2013. These photos are displayed chronologically to the left of the map. Within a minute, three more cameras took empty photographs in the
direction that the animal was last seen moving. The timing and location of these photographs suggest that the raccoon triggered the cameras
but moved out of frame before a photograph could be taken. Inferred movement paths suggest that at least two other cameras were also
visited, but not triggered. The exact location of these missed detections was inferred from the direction of travel of the animal in other pictures
using a conservative rule to minimize missed detections to complete the route

Table 1 Summary of method to reconstruct movement paths
and infer missed detections from a fine scale camera trap grid

1. Remove duplicates: For cases where two cameras simultaneously
photographed the same animal, keep only the record from the camera
closest to the animal.

2. Consider detections close in time: Review all records < 5 min from
each other if they are the same species, an empty frame, or an
unidentifiable animal.

3. Order chronologically: Mark on the map showing the time sequence
of photos.

4. Recognize direction of travel: mark on map

5. Reconstruct movement path: Link sequential detections by drawing
the shortest Euclidian distance between the detection zone where the
target species was photographed, empty frames, and blurry pictures
while also considering time of travel.

6. Identify missed detections: If the shortest path between detections
crossed a camera that did not record a photograph, record that as a
failed detection.
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must (1) enter the general area (in this case the plot)
and subsequently (2) pass in front of the camera. The
animal must then (3) activate the camera’s passive infra-
red (PIR) motion trigger and (4) remain in frame long
enough for the camera to capture the animal in a
picture.
This can be formalized using a modification of the

Royle-Nichols model for abundance-induced heterogen-
eity in detection probability [33]:

pi ¼ 1− 1− rc�rt�rp
� �� �Ni ð1Þ

Here, pi is the probability of one camera detecting the
target species on day i, and Ni is the number of times in-
dividual animals entered the surrounding area (here,
represented by the 0.6 ha plot) on day i. We stress that
the meaning of parameters here differ slightly from the
original equation. Particularly, Ni in this case describes
the daily number of visits to the plot, not necessarily the
number of individual animals since the same individual
could revisit the plot. The remaining variables are a set
of conditional probabilities:

rc ¼ Pr animal passes the camera j animal on the gridð Þ ð2Þ
rt ¼ Pr
animal triggers the camera j animal on the grid; passes in front of camerað Þ

ð3Þ
rp ¼ Pr
animal is photographed j animal on the grid; passes camera; triggers camerað Þ

ð4Þ
Our choice to separate Ni and rc into two components

is an arbitrary decision, which allowed us to
conceptualize space use on two spatial scales. Many
practitioners assume that space use at neighboring cam-
era locations is homogeneous and describe animal
movement at a camera trap interchangeably with move-
ment in its immediate surroundings (represented here
by the camera and the grid) [5]. By separating Ni and rc,
we were able to investigate the suitability of this assump-
tion. It would be equally valid to describe the detection
process solely in terms of the area in front of the

camera, holding rc equal to 1 and redefining Ni as the
daily number of visits to the camera itself.
Using this framework, we empirically estimated indi-

vidual components of the detection process (Ni, rc, rt, rp)
for each species as described in Table 2. To facilitate in-
terpretation, we averaged daily number of visits to the
grid (Ni) across days and probability of passing a camera
(rc) across all cameras. For the average visit rate (N ), we
averaged the number of movement paths recorded for
each species across days. For the average probability of
an animal passing an individual camera given a visit (rc),
we calculated the average proportion of cameras that
were passed per movement path, whether or not the
camera took a picture. Similarly, we calculated probabil-
ity of a camera triggering given a pass (rt) as the propor-
tion of all camera visits that resulted in a photograph,
regardless of whether the animal was captured in the
image. Lastly, we calculated probability of a camera cap-
turing a photograph of an animal that was identifiable to
species given its trigger (rp) as the proportion of animal-
caused triggers that resulted in a photograph of the
animal.
We estimated average daily detection probability (p )

for each species by adding the observed components of
detection into Eq. 1. Since Ni is an integer count, we
could not directly insert visit rate N into the equation.
Instead, we generated 10,000 random values of Ni from
the Poisson distribution PoisðNÞ , calculated pi for each
sample, and averaged across these simulated values to
calculate p . To explore the role of camera performance
in detection probability, we also calculated p under a
hypothetical scenario in which cameras perfectly de-
tected passing animals (rt = rp = 1.0), which we denote
pideal .

Simulation
To evaluate the importance of our empirical results
about unmodeled detection heterogeneity on occupancy
estimates we simulated data to explore several realistic
camera trapping scenarios. We make no assumptions
about the size of area measured by the locations in this

Table 2 Definitions for components of detectability and how they were estimated. We formalized daily detection probability as a
four-step process involving animal movement and camera efficacy. The probability of a camera detecting the target species involves
the number of times per day that animals visit the plot (N), the probability that these animals will subsequently pass an individual
camera (rc), and the probability of the camera sensing the animal and triggering fast enough to take an identifiable picture (rt, rp)

Parameter Statistical Description Estimator Definition

N Average visit rate Mean number of paths crossing the grid per day

rc Pr(Pass | Visit) Probability that animal on grid passes a camera

rt Pr(Trigger | Visit, Pass) Proportion of passes resulting in any photograph

rp Pr(Photo | Visit, Pass, Trigger) Proportion of photographs that contain the animal

Kays et al. Movement Ecology            (2021) 9:41 Page 5 of 13



simulation but tested for the effect of heterogeneity of
detection process on occupancy estimates. We consid-
ered three levels of occupancy probability (ψ = 0.3, 0.5,
0.7) and four levels of average daily detection probability
( p ¼ 0:05; 0:10; 0:20; 0:30; 0:50 ). We simulated unmo-
deled heterogeneity by drawing camera-specific detec-
tion probability from a beta distribution, parameterized
to have a standard deviation of 0.001,0.1,0.05,0.075 and
0.1. For each species, we simulated detection probabil-
ities generated from beta distributions representing each
combination of p and sd (i.e., 20 different distributions
each; Supplementary Figure 1). For each combination,
we simulated 500 datasets in Program R [29] and esti-
mated occupancy probability using single-species, single-
season occupancy models in R-package ‘unmarked’ [8].
Each simulation included 100 camera locations, each
sampled for 20 days. Since many practitioners bin their
data into blocks (e.g., 5-day replicates) to increase detec-
tion probability, we analyzed each scenario as 1- and 5-
day blocks.
We considered two measurements for model accuracy:

bias and error rate. We defined bias as the average dif-
ference between true occupancy probability (ψ) and esti-
mated occupancy probability ( ψ̂ ). Similarly, we defined
error rate as the proportion of estimated 95% confidence
intervals (CIs) that failed to overlap with the true value.
Error rate should be 0.05 if CIs are estimated accurately.

Results
Fifty-three out of 56 cameras ran continuously over a
month, yielding over 1430 trap-nights of data. Three
cameras malfunctioned during the sampling period and
were therefore excluded from the analysis. Camera traps
detected eight species of terrestrial mammals, including
humans and small rodents, with photographs of white-
tailed deer (Odocoileus virginianus, hereafter ‘deer’) oc-
curring most frequently (1408 detections, 21 paths). We
focused on deer and three additional species: northern
raccoons (Procyon lotor, hereafter ‘raccoon’, 18 paths, 36
detections, 10 inferred detections), coyote (Canis latrans,
14 paths, 27 detections, 7 inferred detections), and gray
fox (Urocyon cinereoargenteus, 4 paths, 7 detections, 3
inferred detections). We also had 145 detections of East-
ern gray squirrel (Sciurus carolinensis) and 78 detections
of Virginia opossum (Didelphis virginiana, hereafter
‘opossum’), for a total of 1702 animal detections.
We had 211 photographs containing “No Animal”,

most of which were associated with animal activity, as
57% (n = 120) occurred within 5 min of an animal
photograph somewhere on the grid. This is much higher
than one might expect due to chance, as only 5% of the
43,200 min in our total 30d sample fell within 5 min of
an animal detection. Furthermore, these “No Animal”

images were also confirmed as animal-triggered photo-
graphs based on pictures of animals moving in the direc-
tion of the ‘No Animal’ camera moments before these
detections. The remaining “No Animal” photographs
were probably explained by blowing vegetation heated
by the sun, or animals moving through the edge of our
plot, as they occurred mostly during the day (when sun
is likely to heat vegetation and cause it to trigger the
passive infrared motion sensor [2] and twice as fre-
quently along the outermost edges of the grid.

Movement paths
We focused our analyses on four of the most common
species: deer, raccoons, coyotes, and gray foxes. We ana-
lyzed movement paths for a 10-day subset of data for
deer due to a high volume of detections but used the full
dataset for the other three species. Squirrels and opos-
sums were also detected but excluded from our path
analysis because their detections were too spatially and
temporally disjointed to reliably infer movement paths.
This might be due to the semi-arboreal nature of these
species, which could allow them to traverse the grid
above the cameras’ line of sight, or their smaller body
size, which would decrease the area over which they trig-
gered cameras, leaving some areas within our plot where
we would be less likely to detect them [32].

Fine-scale space use
We found that animals used the fine-scale plot unevenly
in both space and time. In some cases, this variation
aligned with species-specific foraging behaviors recorded
in the camera trap pictures (Fig. 3). For example, capture
rates of raccoons were relatively high along a dry creek
bed leading to a small stream north of the grid (Fig. 1).
Likewise, deer activity was highly concentrated at a sin-
gle station in the center of the grid during the first 9
days of the study. Camera trap photos revealed that a
tulip-poplar (Liriodendron tulipifera) branch had fallen
from the canopy during a storm, providing the deer with
a rich but short-lived foraging opportunity (Fig. 4). Deer
used the grid more evenly after this resource had been
consumed, and detection was not obviously worse in the
more heavily vegetated southwest corner of the plot.
Coyote activity was extremely clustered in both space
and time, erupting in a series of east-west oriented paths
on the south half of the grid for a few days towards the
end of the study (Fig. 5). Camera trap pictures showed
individuals scent marking and carrying food items from
an unseen location east of the grid, presumably related
to a hunting or scavenging event. Foxes were also first
detected during this same time, possibly as scavengers
on the coyote kill. In total, deer were present for the en-
tire study and eventually were detected by all cameras,
raccoons were nearly always detected but only by a
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subset of cameras, while foxes and coyotes were only de-
tected towards the end of the month, and only by a
small subset of cameras (Fig. 5).

Components of the detection process
We used movement paths of the four focal species to in-
vestigate how reliably cameras photographed passing an-
imals (Table 3). Generally, the cameras photographed
passing animals more frequently than they failed to trig-
ger or triggered late (i.e., producing “empty” images with
no animals). The proportion of passes successfully docu-
mented with a camera trap photograph varied among
species, from just 29% in gray foxes to 86% in deer.
However, trigger failures (“no photos”) were always more
common than failures due to rapid animal movement
(“empty photos”).
Restructuring these values into components of detect-

ability provided further insight into the detection process
(Table 4). The probability of an animal encountering a

Fig. 3 Spatiotemporal variation in animal detections on the fine-scale camera grid. Uneven distribution of animal detections within the grid
reflects fine-scale variation in animal space use. We were often able to infer likely biological reasons for this variation from behaviors observed in
the photos. Some raccoon paths coincided with a small dry creek bed. Deer activity briefly increased at the center of the grid on days 5–7 when
a live tree branch fell from the canopy. Coyote activity dramatically increased during the last few days. Individuals were seen carrying food,
suggesting that this increase was related to a feeding event. Deer movement paths are not shown because there were too many to
visualize clearly

Fig. 4 The graph shows deer detection rates by camera traps set at
increasing distances from a fallen tulip-poplar branch. The inset map
shows a bullseye of detection radii over the grid of cameras (black
dots, separated by 10m). The branch fell on day 5, and detection
rates remained high for the next 2 days until all leaves on the
branch were consumed. No discernable increase in deer detections
was observed at any adjacent cameras
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camera (rc) was consistently the smallest component of
detectability, varying between about 0.06 and 0.11 for
our focal species. This suggests that the probability of an
individual camera trap encountering an animal on the
plot was low on average, such that a single randomly
placed camera trap may poorly represent animal activity
within even modestly larger areas (i.e., our 0.6 ha plot).
The clustering of animal movement paths into corridors
and hotspots furthermore shows that this encounter
probability varies substantially across short distances.
Trigger probability (rt) and photo probability (rp) were

generally large compared to encounter probability (rp)
and varied among species. Trigger probability showed
the most between-species variation, apparently increas-
ing with body mass (Fig. 6).

Simulations
The robustness of occupancy models to unmodeled het-
erogeneity in p depended on the average detection prob-
ability across cameras, p (Fig. 7). When average
detection probability was low (p < 0.3), variability in p
adversely affected occupancy estimates. The 95% confi-
dence intervals associated with ψ̂ became less reliable as
variability in p increased for detectability lower than 0.1,
and bias in occupancy point estimates shifted from nega-
tive to positive in some cases. Binning the data into 5-
day intervals improved parameter estimation in some
cases, but these improvements were only substantial
when p > 0.2, relatively high compared to our empirical
observations. Conversely, unmodeled heterogeneity in p
did not affect occupancy estimates when average

Fig. 5 Proportion of cameras 53 cameras in one 0.6 ha plot with detections of four species over 1 month of sampling. Coyotes and gray fox visits
accumulated quickly during short bursts of activity towards the end of the survey, while deer and raccoons were steadily present throughout
the period

Table 3 Raw observed outcomes of animals passing within 10 m of camera traps. These observations were used to estimate the
components of detectability described in Table 3. Camera outcomes are reported as the average proportion of camera visits that
result in identifiable animal photographs, empty or unidentifiable photographs, or no photographs (no camera trigger). These
movement paths are from a 10-day subset of data for deer due to a high volume of detections but we used the full dataset for the
other three species

Species Proportion of Photo Outcomes Sample Sizes

Identifiable Empty or Unclear No Photos Camera passes Paths

Deer 0.86 0.05 0.09 123 21

Raccoon 0.47 0.13 0.39 76 18

Coyote 0.57 0.15 0.28 47 14

Gray Fox 0.29 0.12 0.58 24 4
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detection probability was high (p ≥ 0.3). In these cases,
occupancy point estimates were unbiased and 95% confi-
dence intervals were accurately specified.

Discussion
Occupancy modeling is one of the most common analyt-
ical methods for documenting habitat choice and distri-
bution from camera trap studies, but questions remain
about the size of the area represented by each camera,
how reliably cameras photograph passing animals, and
how well occupancy models describe these processes.
We addressed these questions using a unique fine scale
(10 m) measure of animal space use. Our grid of cameras
allowed us to estimate the movement of practically all
individuals of multiple species using a given area for the
first time, providing insight into how representative one
camera-site is of the surrounding area (within 0.6 ha)
and how reliably cameras photographed animals when
they pass by (within 10m). Animal space use was highly
variable in both space and time, such that single cameras

are not likely to represent the animal activity of the sur-
rounding area well for most species. Camera perform-
ance in detecting passing animals was also poor, and
animals frequently failed to trigger the camera or moved
out of frame before the image was taken; this was par-
ticularly true for smaller, faster moving species. Collect-
ively, non-random space use and low camera
performance can result in low, variable detection prob-
abilities, which can in turn bias occupancy estimates.
However, our simulations suggest that modestly increas-
ing detection probability could offset this issue.
Cameras frequently missed passing animals, either by

failing to trigger, or triggering too slowly (rt and rp,
Table 4). These results are similar to those reported by
studies using time-lapse images to recognize missed de-
tections in Reconyx brand camera traps [12, 39] or
CCTV to compare detections of otters [7]. Trigger prob-
ability (rt) appeared to increase with the body mass of
the target species (Fig. 6), and the occurrence of “blank”
images in which mammals moved out of the frame be-
fore the camera took a photograph suggests that cam-
eras may miss fast-moving animals. These results reflect
the imperfect sensitivity of the PIR sensors that trigger
camera taps, requiring a threshold of change in the ther-
mal signature of the trigger area that might not be met
by small animals, larger animals further away, or animals
moving very fast [24, 32]. In addition, although each
camera triggered on a human out to 10m, it is probable
that our smaller-bodied or faster moving target species
would not be detected perfectly at the far-end of our de-
tection area. Thus, our results on detectability are spe-
cific to the 10m detection area defined by our sampling
grid but are broadly relevant because they emphasize the
point that camera traps do not get a perfect measure of
animal movement. We also note that the PIR motion
sensor triggers on changes to the infrared signature in
front of the camera, typically a warm blooded animal
moving across cooler background vegetation [40]. Given
our work was done during the warm season, when tem-
peratures sometimes approached body-temperature for
many mammals, the sensors might have been less sensi-
tive than if run in cooler environments, where there is
more contrast between animal and background [13].
The fine-scale variation in animal availability is more

difficult to control for in models if the important fine-
scale features of the landscape are not known and mea-
sured ahead of time and can substantially depress overall
detection probability. The probability of an animal pass-
ing a given camera when it visited the plot (rc) was very
low for all focal species in our study, ranging between
0.06 and 0.11. This indicates that a single, randomly
placed camera trap would have likely missed most ani-
mal movement in the surrounding area during our one-
month sample, and emphasizes the importance of

Fig. 6 Relationship between trigger probability and body mass for
four focal species (ascending order by weight: gray fox, raccoon,
coyote, white-tailed deer). Error bars show standard deviation. Body
mass values come from North Carolina animals in the mammal
collections of the NC Museum of Natural Sciences

Table 4 Estimated components of detectability. Components of
detectability are defined as follows: N is the average number of
movement paths crossing the plot per day over a 26.8d period;
rc is the average probability of an animal visiting a given
camera during a plot visit; rt is the probability that a camera
triggers, given a camera visit; and rp is the probability of a
camera producing a useable photograph of the animal if the
camera triggers. Average daily detection probability (p) and
ideal average daily detection probability (pideal) for a single
camera are empirically derived from these components, with
pideal representing a hypothetical scenario in which cameras
perfectly detected passing animals

Species N rc rt rp p pideal

Deer 0.78 0.11 0.91 0.95 0.149 0.170

Raccoon 0.67 0.08 0.61 0.78 0.025 0.052

Coyote 0.52 0.06 0.72 0.79 0.018 0.031

Gray Fox 0.15 0.11 0.42 0.70 0.005 0.016
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maximizing the number of locations sampled by a study
design [20, 35]. In some cases, animal movement is fo-
cused around fine-scale habitat features, such as move-
ment corridors and localized foraging resources, and
these differed among species. These patterns were more
pronounced in some species than others. For example,
deer activity temporarily spiked at one location due to
high-quality foraging opportunities, but activity else-
where on the plot was more uniform. Conversely, coyote
activity was concentrated within a heavily used fine-scale
movement corridor, and generally absent elsewhere on
the grid. Targeting these features when setting the cam-
eras would be difficult to do in a consistent way, and
might not help as a recent evaluation found no benefit
for targeting game-trails for detecting most species [9].
The lack of detections for coyotes and foxes at the start
of the study (Fig. 5) could have also been due to neopho-
bia directed at the sudden appearance of so many cam-
era traps [23].
In occupancy studies, this variation equates to fine-

scale heterogeneity in animals’ availability for sampling,
thus introducing unmodeled heterogeneity in detection
probability across camera locations. This is extremely
important to consider in camera trap occupancy surveys,
as unmodeled heterogeneity violates model assumptions
and can lead to biased parameter estimates. We used
simulations to investigate how severely these violations
might affect occupancy models and found them only
problematic when average detection probability was low
across cameras (p < 0:3). In these cases, occupancy esti-
mates were biased and had inaccurate confidence inter-
vals. Thus, this problem would be worse with rare
species, which are often the target of faunal surveys. We

should point out that our simulations presume unmo-
delled heterogeneity in p is randomly distributed across
sites, and are thus conservative in estimating bias com-
parison to situations where p would be associated with
some other unmodeled habitat factors, or variable cam-
era models.
Imperfect trigger and photo probabilities (rt, rp < 1)

are not intrinsically problematic for occupancy models,
but they may affect parameter estimation by reducing
camera-specific detection probabilities, which are already
small and variable due to fine-scale animal movement
(Table 4). By further reducing average p, imperfect rt
and rp increase the bias in occupancy estimates (Fig. 7).
The most obvious improvements needed are faster trig-
ger times to reduce missed photos and increasing sensor
sensitivity to detect smaller animals further away. How-
ever, the benefits from these upgrades might be rela-
tively modest. Based on the components of detection
that we estimated, daily detection probabilities for all
focal species would still be low (p < 0.2) if cameras de-
tected passing animals perfectly (Table 4). Thus, techno-
logical improvements to camera speed or sensitivity are
not likely to sufficiently increase p unless the probability
of encountering the species (rc and N) is also increased.
Some common approaches for increasing the likeli-

hood of encountering animals that use an area are to
bait the camera, place it along habitat features that are
frequently used by the target species (e.g., game trails),
or deploy cameras for a longer period of time. While
these approaches may be appropriate for capture-
recapture studies, they are less suitable for occupancy
studies where individual cameras are treated as sites.
Baiting cameras may be the most problematic of the

Fig. 7 Effects of heterogeneous detection probability on occupancy estimates. Each scenario was evaluated by simulating n = 500 datasets in
which 100 camera traps were deployed 20 days and analyzing the data with the R-package ‘unmarked,’ treating each day as a replicate “visit.” We
observed similar trends when analyzing the data as four 5-day intervals. Occupancy bias is defined as the average difference between the point
estimate for occupancy probability (ψ̂) and true occupancy probability (ψ). Occupancy error rate is defined as the proportion of simulations in

which the estimated 95% confidence interval for ^ðψÞ did not overlap with the true value
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three, as the area from which they attract animals is un-
known and variable depending on weather, effectively
sampling plots of unknown, variable sizes [6]. Further-
more, attraction to bait can introduce heterogeneity due
to behavioral variation among individual animals within
[11] and between species [1, 25] and temporal variation
in detection probability as the bait degrades or is eaten.
Nonetheless, these problems might be offset by in-
creased detection probability and by keeping an animal
in front of the camera long enough for a good picture,
especially for single species studies where comparisons
across the community are less important [4]. Placing
camera traps along fine-scale habitat features (e.g. roads,
trails, logs) is another common practice and may be
more suitable for occupancy studies [20]. This approach
still requires representative sampling of the landscape,
and can also be put in context if combined with truly
random, off-trail, sites [18]. Extending deployment
length may be the most innocuous of these three com-
mon solutions, but it may be ineffective, particularly if
species have very low detection rates [17, 34, 35], or sim-
ply never use a particular site due to fine-scale habitat
factors (Fig. 5). Furthermore, long deployments can vio-
late the assumption of population closure if they run
long enough to capture immigration/emigration dynam-
ics, which could be a problem for some types of ana-
lyses. Finally, setting cameras to also take time-lapse
images to complement motion-triggered pictures could
also help quantify the detectability of species in cases
where the time-lapse image recorded an animal but the
motion sensor didn’t trigger [12, 39].
Alternatively, suitable increases in detection probabil-

ity might be achieved by both increasing camera per-
formance and increasing the true spatial extent of area
monitored. One promising technological approach
would be to develop 360° camera traps. Indeed, a 360°
camera would both survey a larger area and also be vir-
tually immune to the problem of losing view of animals
out of the frame from slow trigger times, improving all
aspects of the detection process. Sampling designs based
on camera arrays might also offer a solution. For ex-
ample, a number of studies have shown that placing
multiple cameras at the same point can increase detec-
tion probabilities for most species [27, 41]. The down-
side of this approach is that the increased effort and
costs needed to sample one site would likely result in
fewer sites sampled overall [10].
Both of these solutions offer important improvements

over current camera trap practices, but they also require
additional research. Many camera trap researchers are
interested in studying animal space use at much larger
spatial scales than those that are conventionally mea-
sured [38], and both solutions would provide larger,
more clearly-defined sites. However, unmodeled

variation in detection probability would still occur in
both of these scenarios. Average detection probability
would likely be large enough to offset potential biases in
occupancy estimates, but additional research to deter-
mine whether such variation might affect model selec-
tion is needed.
Statistical issues due to variability in p might also be

ameliorated within the modeling framework by including
fine-scale habitat covariates on detection probability or
including camera-specific random effects on detection
probability. We encourage additional research to deter-
mine the extent to which fine-scale habitat covariates
can account for this heterogeneity and point out that the
variation observed within our forest plot occurred across
distances as little as 10 m, below the resolution of most
remotely sensed data. This highlights the importance of
field-recorded habitat covariates collected when setting
cameras, especially those related to the most elusive spe-
cies (i.e., lowest detection probability).
Many camera trap researchers may also be interested

in tangential questions regarding how closely they might
space their cameras or how densely they should sample
their study area. These are important design questions,
but we refrain from making specific recommendations
based on our data because they are all at relatively fine
scale. We also caution that our observations of fine-scale
heterogeneity do not justify close spacing of camera
traps, as autocorrelation can still occur in the presence
of fine-scale heterogeneity. Indeed, model based esti-
mates from another study in our region suggest that oc-
cupancy is significantly autocorrelated up to 0.4 km for
red foxes (Vulpes vulpes) and 0.8 km for coyotes [30].
We instead suggest that practitioners follow current best
practices and strive to sample spatial locations that are
truly representative of their study areas. Excessively close
camera placement (e.g., 10-20 m) may be inefficient, but
autocorrelation seems unimportant at these scales [20],
and can also be addressed using newly-developed occu-
pancy models that account for complex spatial struc-
tures in occupancy and detection probability (e.g., [15,
26, 30]).
Our research is the first of its kind to estimate the

movement of all individual animals from multiple spe-
cies across a (small) natural landscape using camera
traps. However, we recognize that our approach was not
perfect, and relies on certain assumptions that undoub-
tably introduced uncertainty into our estimates. First, we
presumed that these species should be detected to 10 m
away (the size of our grid), but detectability is likely to
decrease with distance even at this scale, so that some of
the non-triggers could have been animals walking along
the far edge of a grid cell and not triggering the camera.
Second, we considered animal detections within the plot
< 5 min apart as one animal while they might have been
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two different individuals. We were able to account for
this in many cases when a group of animals could be
seen in the photographs, or by accounting for exact time
stamps and direction of travel, but might have missed a
few occasions. We presumed that ‘No Animal’ photo-
graphs near an animal detection in space and time were
a missed detection of that species, which might not al-
ways be the case, although blank photographs were
much more likely near known animal deteections, sug-
gesting this was a primary cause. When infering missed
detections, we presumed an animal walked a straight line
between known detections, which might have underesti-
mated missed detections of nonlinear movement. Add-
itionally, movements were difficult to map along the
edge of the grid, and could have been inaccurate for
cases where raccoons or gray foxes ascended or des-
cended into a tree to rest (although we never observed
such tree climbing in the pictures). Nonetheless, we feel
that these problems are minor compared to the level of
insight provided by such complete sampling of the
movement of the animal community, and encourage
others to extend this work through improved study de-
signs and image processing.

Conclusions
Overall, we observed pronounced mismatch between the
small spatial scale recorded by individual camera traps
versus larger spatial scales of interest to practitioners for
ecological inferences, such that absence at a given cam-
era does not reliably indicate absence from the immedi-
ately surrounding landscape. Additionally, by dissecting
the two components of detectability (availability at the
site and probability that the camera triggers when the
animal is there) we hope to highlight that occupancy
analyses with camera trap data violates the assumption
of spatial closure, and thus should properly be inter-
preted as “probability of use” [21, 22]. We recommend
that wildlife ecologists pursue improved sampling de-
signs to increase site size and detection probability and
adopt existing models that better account for heterogen-
eity and autocorrelation structures due to fine-scale ani-
mal movement. We suggest that the development of
360° panoramic camera traps or survey designs using
nested camera trap arrays offer two potential solutions
for improving occupancy surveys. We also encourage
additional research into the detectability of different
species-camera combinations, and between small and
large-scale movement through multiple-camera designs
[16, 27, 28] and combined camera-animal tracking stud-
ies [36].
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