
Compared to species with greater abun-
dances, threatened and endangered species
are less likely to withstand declines in popula-
tion size. This characteristic makes offspring

recruitment of increased importance in sus-
taining viable populations of these imperiled
species (Comizzoli et al. 2009). Accordingly,
some recovery plans for endangered species
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ABSTRACT.—Understanding factors that influence recruitment can improve wildlife conservation. Endangered black-
footed ferrets (Mustela nigripes) rely on prairie dogs (Cynomys spp.) for food and on prairie dog burrows for shelter. We
hypothesized that younger female ferrets with greater densities of prairie dogs in their core use area and fewer adult fer-
rets in their respective prairie dog colony, would produce more kits due to age-dependent productivity, increased food
resources, and decreased competition. We used generalized linear mixed-effects regression and Akaike’s information
criterion adjusted for sample size (AICc) to rank models relating adult female black-footed ferret litter size (range 1–7
kits, n = 24 litters) to female age, core area density of prairie dogs, and adult ferret densities from 3 sites in the USA,
2005–2008. We included year and site as random effects in all models. We observed great model uncertainty; the null
model was most supported and received 44% of model weight (w). The next best-supported model included ferret den-
sity only (ΔAICc = 1.55, w = 0.20). Ferret density may not have been great enough to negatively affect prey acquisition
and litter sizes. Mean litter size did not vary among female ages, but inference was limited because only one individual
was >3 years old (x– = 2.13 years, SD = 0.99). All adult females produced kits, suggesting that the observed minimum
prairie dog density in ferret core use areas (12.3 individuals ⋅ ha–1) was above a threshold of minimal prey abundance for
reproduction. Our findings support previous selections of reintroduction sites as those meeting minimum resource needs
of individual ferrets for reproduction. Future selections of reintroduction sites may become more difficult if the number
of areas with the minimum necessary prairie dog density decreases due to disease and reductions in habitat availability.

RESUMEN.—El comprender los factores que influyen en el reclutamiento puede mejorar la conservación de la vida sil -
vestre. El hurón de pies negros (Mustela nigripes), que se encuentra en peligro de extinción, se alimenta de perritos de
la pradera (Cynomys spp.) y utiliza sus madrigueras para protegerse. Proponemos la hipótesis de que los hurones hem-
bra jóvenes con mayores densidades de perros de las praderas en su zona núcleo de actividad, y con menores hurones
adultos en su respectiva colonia de perros de las praderas, producirán más crías debido a la productividad dependiente
de la edad, a la disponibilidad de más alimento y a menor competencia. Utilizamos modelos lineales generalizados mix-
tos y el Criterio de Información de Akaike, que se adaptó al tamaño de la muestra (AICc), para clasificar los modelos que
relacionan el tamaño de la camada de las hembras adultas (promedio: 1–7 crías, n = 24 lechos) con la edad de las hem-
bras, la densidad en la población de perritos de la pradera en la zona núcleo, y las densidades de la población de
hurones adultos de tres lugares de los Estados Unidos de América (EE. UU.), entre los años 2005 y 2008. En todos los
modelos incluimos el año y el lugar como efectos aleatorios. Observamos que hay una gran incertidumbre en relación con
los modelos; el modelo nulo fue el más apoyado y recibió el 44% de apoyo relativo (w). El siguiente mejor modelo sólo
incluyó la densidad de la población de hurones (ΔAICc = 1.55, w = 0.20). Es posible que la densidad de la población de
hurones no haya sido lo suficientemente elevada como para afectar la obtención de presas y el tamaño de camadas de
manera negativa. El tamaño medio de camada no presentó variaciones entre hembras de distintas edades, pero la infer-
encia fue limitada debido a que sólo un individuo de la especie era mayor de 3 años (promedio = 2.13 años, SD = 0.99).
Todas las hembras adultas tuvieron crías, lo cual sugiere que la densidad mínima de 12.3/ha en la población de perritos
de la pradera, que se observó en las áreas de influencia de los hurones, estaba por encima del umbral de abundancia
mínima de presas para la reproducción. Nuestros hallazgos confirman la selección previa de sitios de reintroducción,
que cumplen con las necesidades mínimas de recursos que los hurones necesitan para reproducirse. La futura selección
de sitios de reintroducción puede resultar más difícil si la cantidad de áreas con la densidad mínima necesaria de
población de perritos de la pradera disminuye debido a enfermedades y a menor disponibilidad de hábitat.
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include captive breeding programs, which pro -
vide animals for reintroductions designed to
increase recruitment into small populations
(Hoffmann et al. 2011). Understanding what
resources are needed for an individual to
achieve reproductive success would improve
evaluation of suitable reintroduction sites and
thereby improve population viability analyses
and recovery efforts. However, resource re -
quirements for viable reproduction are often
unknown. By identifying the free-ranging in -
dividuals best able to survive and reproduce
and then investigating their behaviors and char -
acteristics, biologists could determine resource
needs of a species and focus management ac -
tions toward increasing resource abundance
and improving population viability.

The black-footed ferret (Mustela nigripes)
was thought by some to be extinct until a
small population was found in 1964 in Mel-
lette County, South Dakota, USA. The spe cies
was listed as federally endangered in the USA
in 1967 (USFWS 2008). It was again consid-
ered extinct in 1979, but another wild popu -
lation was found in 1981 in Meeteetse, Wyo -
ming, USA (USFWS 2008). This population
also declined, and the 18 remaining animals
were captured for protection and breeding
(Jachowski and Lockhart 2009). Fifteen ani -
mals from this captive population bred, thereby
beginning a recovery program that has since
produced thousands of offspring reintroduced
to a total of 20 sites in western USA; Saskatche -
wan, Canada; and Janos, Mexico (Biggins et al.
2011, Hoffmann et al. 2011, USFWS 2013a).
Self-sustaining populations at some sites are
posi tive signs for species recovery, yet the spe -
cies remains federally listed as endangered
(USFWS 2013b).

Availability of prairie dogs (Cynomys spp.)
is imperative to black-footed ferret survival
and recruitment (Sheets et al. 1972, Campbell
et al. 1987). Black-footed ferrets rely almost
solely on prairie dogs as food, and ferrets use
prairie dog burrows for shelter and as den
sites to raise kits (Sheets et al. 1972, Campbell
et al. 1987). This dependency results in sym-
patric distributions of ferrets and prairie dogs
(Biggins et al. 2006b). However, each prairie
dog colony is a unique habitat (Hoogland 1995,
Livieri 2007, Jachowski et al. 2008), and local
food abundance, constraints on resource use
(e.g., competition), and biological condition of
ferrets might influence litter size. Litter size is

one important aspect of recruitment that can
be observed in the wild (O’Shea et al. 2010).
Prey abundance affects population-level re -
cruitment in black-footed ferret congeners (i.e.,
Mustela spp.; Erlinge 1974, Fitzgerald 1977),
and might affect litter size in ferret popula-
tions. Biggins et al. (1993) suggested that a
minimum of 272.5 prairie dogs were required
annually to support a black-footed ferret fami ly
group (0.5 adult males, 1 adult female, and 3.3
kits), with some prairie dog mortality also at -
tributed to other predators. However, prairie
dog distributions in colonies are patchy and
temporally dynamic (Jachowski et al. 2008).
Though ferrets select areas of highest prairie
dog density (Jachowski et al. 2011, Eads et al.
2011b), some ferrets live in areas with lower
prairie dog densities (Biggins et al. 1993), which
may reduce litter sizes.

Intrasexual territoriality is a common mech -
anism in mustelids that assists individuals in
maximizing availability of space and prey and
in reducing prey depression (i.e., heightened
antipredator responses by prey; Powell 1994).
However, if ferrets are abundant in a colony,
females may expend more energy defending
their territory and, consequently, less time hunt -
ing. This trade-off may be detrimental to re -
production because though it might increase
prey availability, it might also decrease effi-
ciency of food acquisition and subsequently de -
crease body condition (Amsler 2010). Know-
ing how ferret density influences ferret litter
size might improve our understanding of the
space needs of this species (Sergio and New-
ton 2003). For captive adult females older than
one year, litter size decreased with increased
female age, and the most productive individu-
als were ≤3 years old (Williams et al. 1991,
Marinari and Kreeger 2006). Similarly, Hans-
son (1947) found that mink (Neovison vison)
litter sizes were greatest for 2-year-old fe -
males and declined for females older than 2
years. Thus, age could be an important predic-
tor of black-footed ferret kit production.

Our goal was to assess effects of prairie dog
density in ferret core areas, effects of ferret
density, and effects of ferret age on individual
litter sizes. Use of multiple metrics allowed
comparison of the relative importance of each
metric to variation in litter size. We hypothe-
sized that younger female ferrets with greater
core area density of prairie dogs and lesser
ferret density in their respective prairie dog
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colony would have larger litters due to greater
age-related productivity, greater food resources,
and less competition.

METHODS

Data were collected from 3 black-tailed
prairie dog (Cynomys ludovicianus) colonies at
Locke subcomplex (445 ha) on the UL Bend
National Wildlife Refuge (NWR), Montana,
during 2006 and from 2 colonies in Conata
Basin, South Dakota, including North Exclo-
sure (227 ha) during 2005–2006 and South Ex -
closure (452 ha) during 2007–2008 (452 ha)
(Jachowski et al. 2008, 2010, 2011, Eads et al.
2011a, 2011b). The UL Bend NWR comprises
22,682 ha within Charles M. Russell NWR
that consist of sagebrush (Artemisia spp.) grass -
land transitioning through ponderosa pine (Pi -
nus ponderosa) and Rocky Mountain juniper
( Juniperus scopulorum) forest to river-bottom
forests of Great Plains cottonwood (Populus
deltoides monilifera) and sandbar willow (Salix
exigua). Vegetation in Conata Basin, a 29,000-
ha mixed-grass prairie, is dominated by west-
ern wheatgrass (Pascopyrum smithii), blue grama
(Bouteloua gracilis), and buffalograss (Buchloe
dactyloides), with cottonwood trees dispersed
among seasonal water drainages that align many
of the prairie dog colonies, including our study
colonies (Poessel et al. 2011).

We used data from 24 black-footed ferret lit -
ters, including numbers of kits per litter, UTM
lo cations of individual ferrets, and UTM loca-
tions of prairie dog burrow openings to model
relationships between these potential explana-
tory variables and ferret litter size. Data com-
prised 3 ferrets (3 litters) in the UL Bend,
Montana, colonies; 6 ferrets (8 litters) in the
North Exclosure colony (Jachowski et al. 2011)
in Conata Basin, South Dakota; and 11 fer rets
(13 litters) in the South Exclosure colony in
Conata Basin, South Dakota (Eads et al. 2011b).
Ferrets were located by spotlighting for eye-
shine from a vehicle along a predetermined
route (Eads et al. 2012). Ferrets were identi-
fied by unique dye coloration on the nape of
the neck or implanted passive integrated tran -
sponders read with an AVID® Mi crochip I.D.
Systems (AVID, Norco, CA, USA) automated
reader loop antenna placed around the open-
ings of burrows occupied by ferrets (Biggins
et al. 2006a). A relocation of each ferret was
attempted on nearly consecutive nights from

June to October each year (Eads et al. 2012).
Ferret locations were recorded using a hand-
held GPS accurate to ≤15 m (Eads et al.
2011b).

After birth, black-footed ferret kits remain
with their mother until about early Septem -
ber (Paunovich and Forrest 1987, Forrest et al.
1988). During June–August, we occasionally
observed an adult female above ground with
her kits, either carrying each kit in succession
to a new burrow or leading the kits in a line to
a new burrow. If we observed a female ferret
above ground with kits, we initiated a focal ob -
servation to count kits (although a few counts
were derived from video footage; Jachowski
2007). We accumulated >2 kit counts for each
adult female, and the maximum kit count served
as our index of minimum kit production. Mini-
mum counts provide a relative index of kit pro -
duction by different female ferrets, and such
counts have been used in several studies (e.g.,
Forrest et al. 1985, 1988, Grenier et al. 2009).

Prairie dog burrows were surveyed during
July–September 2005 in the UL Bend and
North Exlosure colonies and during 2007 in
the South Exclosure colony (Jachowski et al.
2008, Eads et al. 2011b). Open burrows were
classified as active or inactive by determining
presence of black-tailed prairie dogs or recent
sign from these rodents (e.g., digging or fresh
feces; Biggins et al. 1993, Dullum 2001). Bur-
row locations were recorded using an ATV-
mounted GPS (Matchett 1994, Jachowski et al.
2008).

We used locations of openings to prairie dog
burrows to estimate colony boundaries in Arc -
Map 9.3.1 (Environmental Systems Resource
Institute, Redlands, CA) by placing a 20-m
buffer around all burrow openings, merging
them into one polygon, and using a negative
buffer to reduce the polygon margin by 20 m
(Eads et al. 2011b). We used ferret locations
(n ≥ 30) to estimate individual 95% fixed-ker-
nel utilization distribution (UD) home ranges
(Millspaugh et al. 2006) by using plug-in band -
width selection (Gitzen et al. 2006) and the Kde
folder (Beardah and Baxter 1995) in MATLAB
(The MathWorks Incorporated, Natick, MA).
We used area independent methods (AIM; Sea -
man and Powell 1990) to determine each fer-
ret’s core area of use. Area-independent meth-
ods delineate areas of use that differ most
from random space use, thus delineating areas
of concentrated space use in home ranges.
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Such methods may be preferred to choosing
an arbitrary UD percentage (e.g., 50%). We
then clipped AIM core areas at prairie dog
colony edges, because ferrets spend little time
away from these colonies (Biggins et al. 2006b).
We used density of active prairie dog burrow
openings (burrows ⋅ ha–1) in each clipped core
area to estimate core area densities of black-
tailed prairie dogs (prairie dogs ⋅ ha–1) for
each ferret by using the following equation:
Prairie dog density = (0.179 × Active burrow
density) / 0.566 (Biggins et al. 1993).

We used generalized linear mixed effects
regression (function glmer in R; Comprehen-
sive R Archive Network 2010) to measure the
relationship of adult female ferret age (years),
density of adult ferrets in each colony (ferrets ⋅
ha–1), and core area prairie dog density (prai -
rie dogs ⋅ ha–1) with maximum number of kits
observed with each adult female ferret in a
single year. Additionally, we used year of ob -
servation and site as random variables in all
models to account for autocorrelation within
years and sites. Adult ferret density in each
colony was calculated by Eads et al. (2011b)
and Jachowski et al. (2011) by dividing number
of adult ferrets detected in a colony by area of
that colony. In general, we fit an a priori can-
didate set of 8 models, including all 7 combi-
nations of predictor variables and a null model
(with only a fixed predictor of 1 and random
variables of site and year). We used Akaike’s
information criterion adjusted for sample size
(AICc; Burnham and Anderson, 2002) and model
weights (w) to rank models (package MuMIN
in R). We calculated relative importance values

(RI; Burnham and Anderson 2002) and 90%
confidence intervals (CI) for each predictor
variable to show overall contribution of each
variable to model weights. We used pseudo-
R2 values (Gelman and Hill 2007) to deter-
mine the goodness of fit of each model by
using deviance (–2 × Log Likelihood) values:
pseudo-R2 = 1 – (deviance of fitted model /
deviance of null model).

RESULTS

Variation in litter size and predictor vari-
ables was observed (Table 1); however, there
was considerable model uncertainty. The null
model was most supported (AICc = 18.20, w
= 0.44) and the second most supported model
included ferret density only (ΔAICc = 1.55, w
= 0.20; Table 2). Pseudo-R2 values indicated
poor overall model fit (range 0.000–0.181; Ta -
ble 2). We failed to detect relationships be -
tween litter size and ferret age, ferret density
in the colony, or core area prairie dog densi-
ties, as 90% CIs of model parameters included
zero (Table 3). Using relative importance val-
ues, ferret density was the most supported
predictor variable (RI = 0.32; Fig. 1), followed
by age and core area prairie dog density.

DISCUSSION

The independent variables under the range
of conditions evaluated were poor predictors
of black-footed ferret litter size. Density of
prairie dogs in ferret core use areas was hy -
pothesized to have a positive effect on litter
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TABLE 1. Data collected from 24 black-footed ferret (Mustela nigripes) litters in UL Bend, Montana (3 litters), and
Conata Basin, South Dakota (North Exclosure, 8 litters; South Exclosure, 13 litters), USA, 2005−2008.

Variable and colony Mean SD Range

Core area prairie dog density 46.87/ha 15.74 12.31–67.38
UL Bend 16.22 6.19 12.31–23.35
North Exclosure 49.50 10.73 26.38–57.99
South Exclosure 52.33 11.38 31.88–67.38

Density of adult ferrets in colony 0.027/ha 0.0055 0.014–0.032
UL Bend 0.014 — —
North Exclosure 0.031 — —
South Exclosure 0.028 — —

Age of adult female ferrets 2.years 0.99 1–5
UL Bend 2 1.00 1–3
North Exclosure 2 0.93 1–3
South Exclosure 2 1.09 1–5

Litter size 3.17 kits 1.24 1–7
UL Bend 2.33 1.15 1–3
North Exclosure 3.00 1.07 1–4
South Exclosure 3.46 1.33 2–7



size because black-footed ferrets prey almost
exclusively on prairie dogs (Sheets et al. 1972,
Campbell et al. 1987) and prairie dog abun-
dance is expected to influence ferret repro-
duction (Biggins et al. 1993, 2006c). It has
been proposed that increased food abun dance
leads to greater individual recruitment (Wauters
and Lens 1995). However, we failed to detect
a relationship between prairie dog densities in
ferret core areas and ferret litter size (Fig. 1).
This might reflect an abundance of prairie dogs
at our study sites that exceeded minimum re -
quirements by female ferrets. All adult female
ferrets in these populations were observed
with at least one kit, suggesting that prairie
dog abundance at our study sites provided
each female ferret the food resources neces-
sary to reproduce and support birth and de -
velopment of at least one offspring.

We hypothesized that younger female fer-
rets would produce larger litters than older
females, but there was little variation in litter
size among ages. However, only one ferret was
>3 years old (litter size = 4 kits), which pre-
vented observation of potential differences in

litter size between more productive-aged ani-
mals (≤3 years old) and those older than 3 years
(Williams et al. 1991). Grenier et al. (2007) re -
ported that only 25% of adult ferrets were >2
years old in a Wyoming population. Because
most wild adult female ferrets are <4 years
old (Forrest et al. 1988, Grenier et al. 2007), it
will likely be difficult to detect an effect of age
on litter size.

Investigating the variation in factors that may
influence species reproduction could help us
understand mechanisms of natural selection
and phenotypic persistence. Such investigations
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TABLE 2. Model-fitting results for prediction of litter size in black-footed ferrets (Mustela nigripes) in UL Bend, Montana,
and Conata Basin, South Dakota, USA, 2005–2008.

Modela K AICc ΔAICc w Pseudo R2

Null 3 18.20 0.00 0.44 —
Ferrets 4 19.75 1.55 0.20 0.124
Age 4 20.83 2.63 0.12 0.025
CorePD 4 21.10 2.90 0.10 0.000
CorePD + Ferrets 5 22.34 4.14 0.06 0.181
Age + Ferrets 5 22.66 4.46 0.05 0.152
Age + CorePD 5 24.05 5.85 0.02 0.026
Age + CorePD + Ferrets 6 25.74 7.54 0.01 0.200
aModels shown in rank order from most to least supported by AICc. Model components include adult female ferret age in years (Age), density of adult black-
footed ferrets (individuals per ha) in each colony (Ferrets), and density of black-tailed prairie dogs (individuals per ha) in each ferret core use area, determined
using the area independent method (CorePD).

TABLE 3. Linear model variables for predicting litter
size of black-footed ferrets (Mustela nigripes) in UL Bend,
Montana, and Conata Basin, South Dakota, USA, 2005–
2008.

Relative
Variablea Estimateb 90% CIb importance

Ferrets 29.53 –12.45–71.51 0.32
Age 0.06 –0.13–0.25 0.20
CorePD 0.00 –0.02–0.01 0.19
aVariables ranked from most to least predictive according to relative impor-
tance as calculated by the sum of Akaike model weights. Variables include
adult female ferret age in years (Age), density of adult black-footed ferrets
(individuals per ha) in each colony (Ferrets), and density of black-tailed
prairie dogs (individuals per ha) in each ferret core use area, determined
using the area independent method (CorePD; see Seaman and Powell 1990).
bEstimates and CI from model-averaging using all models including that 
variable.

Fig. 1. Linear relationship between density of adult fer-
rets in each of 3 colonies (see Table 1) and numbers of kits
observed with female ferrets for 24 ferret litters in UL
Bend, Montana (3 litters), and Conata Basin, South
Dakota (North Exclosure, 8 litters; South Exclosure, 13
litters), USA. 2005–2008. Data points are scattered along
the x-axis; clusters of data points are for the same density
of adult ferrets.



can also provide insight into how humans can
conserve threatened and endangered species
(Caro and Sherman 2011). However, we have
demonstrated that variation in some resource-
use metrics may not always relate to variation
in animal fitness. Poor overall model fits sug-
gest that our models lacked one or more pre-
dictor variables necessary to explain variation
in litter size, or that variation in our predictor
variables was insufficient to detect relation-
ships with litter size. Though we had a rela-
tively large sample size for a study on endan-
gered black-footed ferrets, we still may have
lacked the power to determine factors that in -
fluence variation in litter size. Further, only 3
of the litters were from the UL Bend popula-
tion in Montana, whereas the rest were in the
similar Conata Basin sites. This sampling con-
dition possibly limited variability in our pre-
dictor variables to a narrower range than the
full range of natural conditions.

Although support was weak, we detected a
positive effect of ferret density on litter size,
which effect contrasts our original hypothesis.
The slight trend of greater ferret density cor-
relating with greater litter size (Fig. 1) coun-
ters our prediction of increased competition
leading to reduced litter size. This trend may
also be an artifact of productive habitats being
able to support ferrets that can produce more
kits. However, variability in ferret density may
have also been limited because ferret density
was measured at the colony level and was
therefore used only at the 3 levels of the study
sites. Additionally, ferret densities at the 2
Conata exclosures were similar (Table 1), and
small sample size (n = 3) from the UL Bend
colony may have inhibited a lower ferret den-
sity from showing a stronger effect in our
models.

We offer 4 recommendations for future stud -
ies that relate resource use to fitness. First, we
encourage use of multiple indices or estimates
of fitness (e.g., survival, breeding success, and
lifetime and annual offspring production). Test -
ing associations between these metrics may
help improve investigations and assumptions
of biological outcomes (Ayers et al. 2013). Sec-
ond, investigations of variation in animal fit-
ness should use multiple predictor varia bles
to determine which variables are most in -
fluential on biological outcomes (Ayers et al.
2013). Third, we encourage investigations at
multiple spatial scales to identify the scale most

pertinent to the species of interest (Gaillard et
al. 2010). Fourth, studies should include sites
with variability in resource abundance and het -
erogeneity to better relate fitness of the focal
species to the range of habitat conditions ex -
perienced by that species (Aldridge and Boyce
2008). For example, the minimum threshold
of prairie dog density needed to support indi-
vidual black-footed ferrets, or ferret families,
should be determined using field data to im -
prove selection of reintroduction sites and rec-
ommendations for conservation efforts (Big-
gins et al. 2006c).

Knowledge of factors that limit reproduc-
tion would enhance conservation of threat-
ened and endangered species like the black-
footed ferret (Maxwell and Jamieson 1997,
Andrabi and Maxwell 2007). Though we were
unable to detect a significant relationship be -
tween prey density and litter size, our results
do support selecting black-footed ferret rein-
troduction sites that contain black-tailed prai -
rie dog densities of at least 12 individuals ⋅ ha–1

in ferret core areas (Biggins et al. 1993, 2006c).
Though Biggins et al. (1993) modeled neces-
sary prairie dog densities based on a 75-ha
area of use by adult females, our results pro-
vide additional information on potential prai -
rie dog densities necessary for kit production.
Additionally, association of individual-level (i.e.,
ferret-level) prairie dog density with litter size
at any spatial scale has not been published to
our knowledge. However, additional character -
istics of future reintroduction sites should be
considered. For example, precipitation influ -
ences the abundance of aboveground vegeta-
tion, which seemingly influences prairie dog
recruitment, thereby moderating prey avail-
ability to ferrets (Biggins et al. 2006c). In addi-
tion, diseases are important, particularly plague,
a zoonosis caused by the primarily flea-borne
bacterium Yersinia pestis. Plague can decimate
populations of prai rie dogs and ferrets (Big-
gins et al. 2011). En suring sufficient prairie
dog abundance and understanding causes of ju -
venile ferret mortality will improve our ability
to facilitate re covery of the endangered black-
footed ferret.
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